КАТАЛОГ

НАГРЕВАТЕЛЬНЫЕ КАБЕЛИ

ООО «Специальные Системы и Технологии»

ООО «Специальные Системы и Технологии»

ООО «Специальные Системы и Технологии» — Российская компания, специализирующаяся на проектировании, производстве, монтаже, гарантийном и постгарантийном обслуживании различных систем электрообогрева. Широкий спектр электрических нагревательных кабелей может обеспечить решение практически любых проблем обогрева, начиная от подогрева полов в квартире и заканчивая решением сложнейших задач поддержания температуры трубопроводов неограниченной длины.

Широкую известность получила такая продукция компании, как теплые полы «ТЕПЛОЛЮКС», антиобледенительная система для крыш и водостоков «ТЕПЛОСКАТ», система обогрева открытых площадей «ТЕПЛОДОР», система обогрева трубопроводов «ТЕПЛОМАГ» с возможностью обогрева неограниченно длинных трубопроводов на основе СКИН-эффекта, домашняя управляющая интеллектуальная система «МАСТЕР».

Компания ССТ за более чем десятилетний период своего существования разработала и внедрила широкую гамму нагревательных кабелей и проводов самого разного назначения, расчитанных на рабочие температуры до 1000°С Нашим зарубежным партнером является фирма Heat Trace Limited (Манчестер, Англия), занимающаяся обогревом объектов нефтегазовой промышленности во многих странах мира.

Наши клиенты:

Архитектурно-строительные объекты:

Государственные и общественные:

Пост №1 у «Вечного огня», TPK «Манежная площадь» «Старый Гостиный Двор» в Москве Мэрия Москвы Московская Городская Дума Министерство Обороны РФ Дворец Президента Татарстана Министерство Финансов Татарстана Казанский Кремль Управление дипломатического корпуса Комплекс МОСКВА-СИТИ Здание ИТАР-ТАСС Редакция газеты «АиФ» Российская Торгово-Промышленная Палата Государственный Таможенный Комитет РФ Посольство Испании Посольство Мальты

Вокзалы:

Казанский в Москве Курский в Москве Ярославский в Москве Вокзал в Екатеринбурге Вокзал в Минске

Аэропорты:

Шереметьево Домодедово Аэропорт в Иркутске

Метрополитен:

Московский

Санкт-Петербургский

Минский

Банки:

Центральный Банк РФ

Сбербанк «Тори-Банк» «Альфа-Банк» «Новый банк» «Руссобанк» «Эксимбанк»

Российский Финансово-Банковский Союз

Научные и технические:

Космодром Байконур Центр космической связи Завод им. Хруничева Институт им. Курчатова Институт атомных реакторов Химический факультет МГУ

Храмы:

Церковь св. Михаила Архангела Борисоглебский монастырь

Храм Братства Сергия Радонежского

г. Мирный г. Ямбург пос. Ильинское пос. Тайнинское

Церковь Адвентистов Седьмого Дня в Архангельске

Культурные и спортивные:

Большой театр

Музей Большого театра Театр им. Моссовета Центр Мейерхольда

Исторический музей, г. Москва

Музей А.С. Пушкина Археологический музей Музей Революции

Исторический музей, г. Тюмень Казанская консерватория Экспоцентр на Красной Пресне

ВВЦ, павильон «Российские семена»

Дом Культуры, Жуковка

БСА «Лужники»

Стадион «Динамо» в Москве Стадион «Динамо» в Киеве Спортивный Центр в Красноярске Спорткомплекс МВД Казахстана Ледовый дворец АК «БАРС» в Казани

Стадион «Ракета» в Казани

Оздоровительный Центр «Полюс»

Офисные здания:

Лицензионное управление Московской области Деловой центр в Толмачевском пер.

Офисный комплекс КСО на ул. м.Никитская, Москва

Бизнес-центр на проспекте Мира

ФБК «Пресс» Фирма «Савва» «Сургутнефтегаз» «Квант интернейшнл» «Оптима-Иинвест» «ГОСИНКОРСТРОЙ» «КООПВНЕШТОРГ» АО «Электросвязь» «Центравтотех» ОПК «БОР»

«ЗАПСИБГАЗПРОМ» «СОЮЗАВИАЦЕНТР»

«Мобильные Телесистемы»

«ОПТИМИНВЕСТ» «ЭНЕРГОПРОМСТРОЙ» «Мосводоканал»

Московская Железная Дорога

«Тюменьэнерго»

«Запсибгазпром», г. Тюмень

ВНИПИ «Трансгаз»

«ТАТТРАНСГАЗ», г. Казань

Заводы и фабрики:

Комбинат по производству пива

«Очаково»

Молокозавод АО «Молоко» в Киши-

неве

Завод «Тонар»

«Оргсинтез», г. Казань, Фирма «Сервис-холод» ПО «Автопровод», г Арзамас,

АО «Архангельский ЦБК», г. Архан-

гельск

Заводы ЖБИ:

Саранск Воскресенск Нальчик Казань Тюмень

Станции аэрации:

Люблинская Троицкая

Томилинская птицефабрика

Торговые и технические центры:

Торговый дом «Гранд» на Ленин-

градском шоссе

Торговый комплекс «Три Кита» на

Минском шоссе

Технический центр TOYOTA Технический центр FORD Гипермаркет «Рамстор»

Магазин «Меха» на ул. Б. Дорогоми-

ловская

Преображенский рынок в Москве

Рынок «Тракт Терминал» Магазин «Новинка»

www.sst.ru

Магазины в Салехарде и Владивостоке

Мосты, переходы, АЗС:

Краснохолмский мост в Москве Подвесной мост в Сургуте Подземный переход на ул Ново-Черемушинская

Подземный переход на Садовом кольце у Красных Ворот

АЗС НК «Лукойл» (16 АЗС в 10 городах)

АЗС Загорской нефтебазы (2)

Гостиницы:

Гостиница «Москва»

Гранд-отель «Марриот» на ул.Тверская

Новотель в Шереметьево-2 Hotel MIAT в Улан-Баторе, Монголия

Жилые дома:

Жилой комплекс «Золотые ключи» на Минской ул.

Жилые дома серии П-44:

м-н Митино

ул. Исаковского

ул. Василевского

Жилой дом на ул. Тверская

Жилой дом на ул. Гиляровского

Жилой дом на пр-те Вернадского

Жилой дом на ул. Вавилова

Жилой дом на ул. Крылатские Холмы

Жилой дом в Оружейном пер. Жилой дом в Хлебном пер. Коттеджный поселок Красноярского АЗ

Объекты нефте-газовой промышленности

НК «ЮКОС» г.Нефтеюганск. Обогрев технологических трубопроводов, обвязки скважин на Приобском месторождении. Защита от замерзания, поддержание температуры.

НК «Башнефть» Республика Башкортастан. Обогрев узлов задвижек нефтепровода.

АО «Татнефть» г.Бугульма. Обогрев технологических линий.

РИТЭК, НГДУ «РИТЭК Белоярскнефть». Установка переработки нефти. Защита от замерзания.

РИТЭК, НГДУ «РИТЭК Надымнефть». Обогрев резервуаров. Защита от замерзания. РИТЭК, НГДУ «РИТЭК Челны-нефть». Обогрев резервуаров сырой нефти.

НК «Коми ТЭК» г.Усинск. Обогрев технологических трубопроводов.

Красноярский алюминиевый завод г.Красноярск. Обогрев бункера и технологического трубопровода.

НК ЛУКойл г.Усинск.

Schlumberger Республика Коми. Обогрев технологических трубопроводов.

«Сиданко» Хабаровский НПЗ.

АО «Комиарктикойл» г.Усинск Трубопровод сырой нефти. Защита от замерзания.

АК «Транснефть», Морской терминал нефтебазы «Шес-харис». Мазутопровод морского терминала. Поддержание температуры.

АО «Печеранефтегаз» г.Ухта. Трубопровод подачи воды. Защита от замерзания.

Хабаровский НПЗ г.Хабаровск. Ряд систем с использованием саморегулирующихся кабелей. Защита от замерзания, поддержание температуры.

ОАО «Тюменьнефтегаз» г.Тюмень. Технологические трубопроводы. Поддержание температуры.

Новокуйбышевский НПЗ г.Новокуйбышевск. Резервуары хранения мазута на 5 и 10 тыс. тонн. Поддержание температуры.

АО «Запсибгазификация» г.Тюмень. Импульсные трубки. Поддержание температуры.

АО «Нефтемаш» г.Тюмень. Подогрев установки учета нефти типа «Спутник». Поддержание температуры.

Завод моторных масел г.Тюмень. Маслопровод. Поддержание температуры.

Завод «Краситель» г.Рубежное. Технологические трубопроводы с нафтолом. Поддержание температуры.

ГПП «Объединение АЗОТ» г.Северодонецк. Трубопровод циклогексанола. Поддержание температуры.

ОАО «Мотовилихинские заводы» г.Пермь. Технологический трубопровод устройства «Ковш-печь». Технологический обогрев.

Аэропорт «Домодедово» г.Москва. Трубопровод с керосином. Защита от замерзания.

АО «Мосводоканал» г.Москва. Защита водопровода от замерзания.

АО «Норильский комбинат» г.Норильск. Кислородопровод. Защита от замерзания.

АО «Манежная площадь» г.Москва. Спринктерная система пожаротушения грузового двора. Защита от замерзания.

Люблинская станция аэрации г.Москва. Обогрев шнековых элеваторов. Защита от замерзания.

АО «Архангельский ЦБК» г.Архангельск. Трубопровод подачи воды. Защита от замерзания.

Бурлингтон Энтерпрайзиз Лтд г.Москва. Трубопровод подачи воды. Защита от замерзания.

Фирма «Континент» г.Москва. Трубопровод подачи воды. Защита от замерзания.

Более 1 000 000 наших систем работают во всех регионах СНГ.

Сертификация

Компания ССТ имеет все необходимые лицензии для производства, монтажа и обслуживания кабельных систем обогрева, в том числе во взрывоопасных зонах. На предприятии функционирует система контроля качества материалов и продукции, что позволяет поддерживать гарантийные сроки большой длительности на нагревательные кабели и секции. Все изделия, предлагаемые нашей компанией — нагревательные кабели, провода и ленты (плоские нагревательные кабели), готовые нагревательные секции, состоящие из нагревательного кабеля, соединительных муфт и монтажных проводов, регулирующая аппаратура (Регулирующая аппаратура в данном каталоге не рассматривается. Подробную информацию о ней Вы сможете получить, связавшись с нами.) и аксессуары, имеют сертификаты соответствия, пожарные сертификаты и гигиенические заключения. Ряд изделий сертифицирован для применения во взрывоопасных зонах. В описании каждого кабеля приводится полный перечень сертификатов и заключений.

Горючее может присутствовать в виде газа, пара или пыли.

Кислород всегда присутствует в большинстве случаев, так как седержится в воздухе в количестве 21% по объему.

Воспламенитель — искры или горячие поверхности могут быть потенциальными причинами воспламенения. Если концентрация пыли, газа или пара в воздухе находится между верхним и нижним пределами воспламенения и воспламенитель имеет достаточную энергию или температуру, может произойти пожар или взрыв.

Взрывоопасные зоны по МЭК и ГОСТ

Что такое опасная область?

Взрывоопасную область можно определить как «местоположение объекта, где при нормальных рабочих условиях вероятно присутствие в атмосфере легковоспламеняющихся газов или паров». Во всех электрических приборах, устанавливаемых в опасных областях, принимаются специальные меры, предотвращающие воспламенение окружающей воздушно-газовой смеси, которое могло бы в противном случае произойти от случайной искры или контакта с горячей поверхностью. Эти специальные меры следует рассматривать как обеспечивающие защиту только при нормальных рабочих условиях, в аврийной ситуации (такой как взрыв или детонация) от них нельзя ожидать того же уровня безопасности. В подавляющем большинстве случаев взрыв или пожар возникают в результате комбинации трех ключевых составляющих, получивших название «треугольник риска». Для воспламенения взрывоопасного материала необходимо наличие каждой составляющей.

Как классифицируются опасные области?

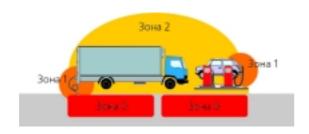
Опасные области можно рассматривать как «потенциально взрывчатые атмосферы», иными словами, как атмосферы, которые могут стать взрывчатыми из-за местных или эксплуатационных условий. Все потенциально взрывчатые атмосферы оцениваются вероятностью взрыва воздушногазовой смеси. Другими важными факторами являются время распространения, уровень наличной вентиляции, относительная плотность газа и возможные последствия взрыва.

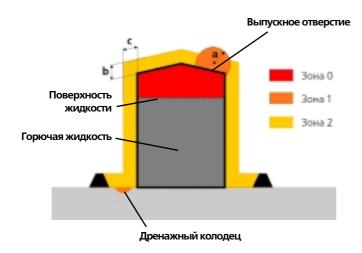
В российской системе стандартизации оборудования для взрывоопасных областей, которая гармонизированна с международной системой стандартизации, принятой Международной Электротехнической Комиссией (МЭК) эти вероятности выражаются как классификация Зон или Категорий смесей.

Оборудование для опасных областей также подразделяется на категории в зависимости от природы присутствующего газа или пара, а также от того, предназначено ли оно для горнодобывающей промышленности. Оборудование группы I (Газовая группа I) называется рудничным взрывозащищенным. Группа I включает шахты и надземные устаноки горнодобывающей промышленности, где присутствует метан. Оборудование группы II (Газовая группа II) — это взрывозащищенное электрооборудование для внутренней и наружной установки. Группа II включает все другие надземные установки, где метан отсутствует. Оборудование Группы I требует очень высокого уровня безопасности из-за опасной природы газа. Все далее сказанное относится только к оборудованию Группы II.

Определение Зон для опасных областей Группы II

Взрывоопасные зоны по ГОСТ Р 51330


Взрывоопасность и взрывозащищенное электрооборудование


Взрывозащищенное электрооборудование — электрооборудование, в котором предусмотрены конструктивные меры по устранению или затруднению возможности воспламенения окружающей его взрывоопасной среды вследствии эксплуатации этого электрооборудования (ПУЭ).

Взрывозащищенное электрооборудование для внутренней и наружной установки, в зависимости от уровня взрывозащиты подразделяется на (ГОСТ Р 51330.9–99):

Класс зоны	Уровень взрывозащиты	Характеристика
0	Особовзрывобезопасное электрооборудование	Взрывозащищенное электрооборудование, в котором по отношению к взрывобезопасному электрооборудованию приняты дополнительные средства взрывозащиты, предусмотренные стандартами на виды взрывозащиты
1	Взрывобезопасное электрооборудование	Взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, определяемых условиями эксплуатации, кроме повреждений средств взрывозащиты
2	Электрооборудование повышенной надежности против взрыва	Взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается только в признанном нормальном режиме работы

Примеры классификации взрывоопасных зон

- а = 3 м от вентиляционных отверстий
- b = 3 м над крышей
- с = 1 м по горизонтали от резервуара

www.sst.ru

Подходящий тип защиты (исполнение) для электрических приборов	Классификация и определения по ГОСТ Р 51330, МЭК 60079, CENELEC (см. также BS En50014:1993)	Категория оборудования ATEX (см. BS EN50014:1997)
Взрывозащищенное Ex «ia» Особо защищенное Ex «s»	Зона 0 Область, в которой взрывчатая газо-воздушная смесь непрерывно присутствует в течение длительных периодов времени	Категория 1G
Осооо защищенное ех «5»	Зона 20 Область, в которой опасная взрывчатая атмосфера, образованная облаком пыли в воздухе, присутствует постоянно, или длительное время, или часто	Категория 1D
Огнестойкое Ex «d» Взрывозащищенное Ex «ib» Герметизированное Ex «p» Повышенной безопасности Ex «e»	Зона 1 Область, в которой вероятно появление взрывчатой газо-воздушной смеси при нормальных рабочих условиях	Категория 2G
Особо защищенное Ex «s» Маслянное Ex «о» Заполненное Ex «q» Герметичное Ex «m» Оборудование, подходящее для зоны 0	Зона 21 Область, в которой вероятно появление опасной взрывчатой атмосферы, образованной облаком пыли в воздухе при нормальных рабочих условиях. Слои взрывчатой пыли будут присутствовать в общем случае.	Категория 2D
Не искрящееся Ex «N» или «n»	Зона 2 Область, в которой не ожидается появление взрывчатой газо-воздушной смеси при нормальных рабочих условиях	Категория 3G
Оборудование, подходящее для зоны 0 Оборудование, подходящее для зоны 1	Зона 22 Область, в которой вероятно появление опасной взрывчатой атмосферы, образованной облаком пыли в воздухе при нормальных рабочих условиях, и если такая смесь пояляется, она присутствует короткое время, или область, в которой присутствуют скопления или слои взрывчатой пыли	Категория 3D

Какие факторы следует учитывать при выборе оборудования для взрывоопасных областей?

Температурная классификация ГОСТ Р 51330, МЭК60079/ CENELEC	Максимально допустимая температура поверхности,°С
T1	450
T2	300
T3	200
T4	135
T5	100
T6	85

Газовая группа отражает, насколько легко взрывчатая атмосфера может воспламениться от искры или дуги. Температурная классификация, или Т-класс, учитывает эффект воспламенения от контакта с нагретой поверхностью. Все газы и пары характеризуются своей температурой самовозгорания, до которой их надо нагреть, чтобы они воспламенились. Электрооборудованию присваивается Т-класс от Т1 до Т6, который определяет максимальную допустимую температуру поверхности открытых частей оборудования.

Заказчик оборудования для взрывоопасных областей должен выбирать его с учетом Зоны, где оно будет использоваться, и Температурной классификации.

Системы классификации и стандартизации опасных областей по MЭK/CENELEC

Газовая группа МЭК (CENELEC)	Характерный газ
I IIA IIB	Метан Пропан Этилен
IIC	Водород/Ацетилен

Система классификации и стандартизации областей MЭK/CENELEC широко распространена, но используется не во всех странах за пределами Европы. В США и Канаде, например, принята совершенно иная система (NEC), что следует иметь в виду при поставке оборудования в эти страны.

Оборудование, относящееся к Газовой группе I должно иметь в обозначении букву М (метан). Приборы Газовой группы II имеют в обозначении букву G (газы, туман или пары) или букву D (пыль).

Присутствие врывчатых веществ	Взрыв. вещества	МЭК	EN	NEC 505	NEC 500
Постоянно или длительные	Газы Пары	Зона 0	Зона 0	Класс 1 Зона 0	Класс I Разд. 1
периоды	Пыль	3она 20	3она 20		Класс II Разд. 1
Вероятно появление при	Газы Пары	Зона 1	Зона 1	Класс 1 Зона 1	Класс I Разд. 1
нормальных рабочих условиях	Пыль	3она 21	Зона 21		Класс II Разд. 1
Маловероятно появление при нормальных	Газы Пары	Зона 2	Зона 2	Класс 1 Зона 2	Класс I Разд. 2
рабочих условиях, только редко и на короткий период	Пыль*	3она 22	3она 22		Класс II Разд. 2

Взрывоопасные смеси делятся на следующие категории:

Группа электрооборудования (категория взрывоопасности газа, пара)	БЭМ3**	MBT***	Характерные газ, смесь
IIA	≥0,9	>0,8	Пропан, метан промышленный, бензол, бензины, нефть, ацетон, дизельное топливо
IIB	≥0,5 <0,9	0,45-0,8	Этилен, коксовый газ
IIC	≤0,5	<0,45	Водород, ацетилен

^{*}) Пыль может образовывать облака и/или слои.

Классификация по температуре самовоспламенения и максимально допустимой температуре поверхности оборудования

Температурный класс	Температура самовоспла- менения, С	Характерные газ, смесь	Максимальная температура поверхности, С	Температурная группа взрывоопасной смеси, для которой электрооборудование является взрывозащищенным
T1	выше 450	Ацетон, водород, пропан	450	T1
T2	от 350 до 450	350 до 450 Бутан, спирты, 300 ацетилен	300	T1, T2
T3	от 200 до 300	Бензины, керосины, скипидар, нефть	200	T1, T2, T3
T4	от 135 до 200	Ацетальдегид, диэтиловый эфир	135	T1, T2, T3, T4
T5	от 100 до 135	Сероуглерод	100	T1, T2, T3, T4, T5
T6	от 85 до 100		85	T1, T2, T3, T4, T5, T6

www.sst.ru

^{**)} БЭМЗ — безопасный экспериментальный зазор.

зазор. ***) МВТ — соотношение минимального воспламеняющего тока к минимальному воспламеняющему току лабораторного метана

Классификация нагревательных кабелей

кабелей для промышленного и бытового применения, все необходимы аксессуары для их монтажа, а также регулирующую аппаратуру (см. каталог «Терморегуляторы» той же фирмы). Все кабели имеют российские сертификаты соответствия и пожарной безопасности (номера сертификатов приведены в каталоге). Большинство изделий сертифицировано для применения во взрывоопасных зонах. Основные марки кабелей имеют также сертификаты Беларуси и Казахстана.
В зависимости от области применения используются на-

Компания ССТ предлагает широкую гамму нагревательных

В зависимости от области применения используются нагревательные кабели различной конструкции, рассчитанные на разные диапазоны температур.

Основные типы конструкций нагревательных кабелей и их области применения

Классификация по принципу тепловыделения

Резистивные

Это самая большая группа кабелей, представляемых компанией ССТ. В этих кабелях тепло выделяется нагревательной жилой, окруженной изоляцией, экранами и защитными оболочками. Они запитываются с двух или с одного конца (двухжильные кабели). Стандартные резистивные кабели серии «Теплолюкс» используются для обогрева полов. К разновидностям этого типа относятся, в частности, плоские нагревательные ленты типа Логнлайн, бронированные, армированные и спиральные кабели. Резистивные кабели используются секциями определенной длины, зависящей от исполнения кабеля и напряжения питания.

Кабели типа Лонглайн предназначены для обогрева длинных трубопроводов, эксплуатируются по схеме трехфазной нагрузки.

Бронированные кабели механически прочны, их можно использовать в длинных водостоках без троса, это почти единственный тип кабеля, укладываемый непосредственно в бетон, он незаменим для дорог и тротуаров. Запас теплостойкости позволяет подгонять длину нагревательной секции по месту на 1—2 м.

Армированные кабели также имеют усиленную механическую защиту, но меньшей прочности, чем бронированные. В основном, применяются для обогрева водостоков. Спиральные кабели имеют значительно меньшую длину и соответственно большее удельное тепловыделение, чем обычные, что важно при обогреве малых площадей, узлов оборудования или устройств малых размеров.

Преимущества

Простота конструкции, высокая технологичность и относительно низкая стоимость. Монтаж нагревательных секций на объекте занимает мало времени и не сложен. Плоское сечение двухжильных кабелей и лент обеспечивает хороший тепловой контакт с обогреваемой поверхностью. Они позволяют обогревать трубопроводы длиной до не-

Пример резистивного кабеля (кабель БНО) серии «Теплолюкс»

скольких километров при питании с одного конца.

Недостатки

Необходимость использования секций строго заданной длины. Кабели Логнлайн зачастую требуют для питания высоковольтного оборудования и соблюдения связанных с этим мер безопасности.

Основные области использования

Теплые полы, дороги, тротуары, стадионы, спортивные площадки, кровли, трубопроводы, резервуары, технологическое оборудование, холодильные камеры, теплицы, сельскохозяйственные помещения.

Зональные

Специфическая разновидность резистивных кабелей. Тепло выделяется в нагревательной спирали, имеющей через равные расстояния контакт с двумя токопроводящими жилами, благодаря чему формируются зоны тепловыделения, соединенные параллельно. Вся конструкция окружена изоляцией, экранами и защитными оболочками. Запитываются с одного конца. Используются отрезками, кратными длине зоны. Типовая длина зоны — около 1 м.

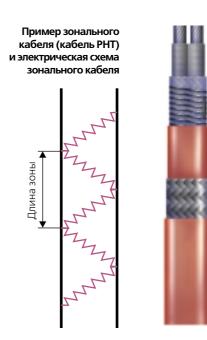
Преимущества

Возможность использования произвольными (с точностью до метра) длинами (до 200 м), отрезаемыми на объекте по месту. Высокие рабочие температуры (у кабелей марки АНТ — до +350°С) Тепловыделение, не зависящее от температуры. Возможность использования концевого участка до первого зонного контакта в качестве «холодного» монтажного конца.

Недостатки

Необходимость знания точного местонахождения зонных контактов и учет «зонной кратности» длины при проектировании.

Основные области использования


Технологические трубопроводы, резервуары, длинные (до 40 м и более) водостоки.

Саморегулирующиеся

Тепло выделяется в полупроводящей пластмассе, заполняющей пространство между двумя токопроводящими жилами. При повышении температуры сопротивление пластмассы возрастает и тепловыделение падает, благодаря чему создается эффект саморегулирования. Конструкция окружена электроизолирущими и защитными оболочками и экранами. Запитываются с одного конца.

Преимущества

Возможность использования произвольными (от 20 см) длинами, отрезаемыми «по месту». В ряде случаев не требуют использования регулирующей аппаратуры. Не перегреваются и не перегорают даже при самопересечении, т.к. каждый участок кабеля сам приспосабливается к окружающим усло-

Принцип саморегулирования

виям теплоотдачи. Незаменимы для антиобледенительных систем, т.к. повышают тепловыделение в снегу и талой воде в 1,5—2 раза.

Недостатки

Стартовый ток при низкой окружающей температуре существенно (в полтора-два раза) превышает номинальный рабочий ток системы обогрева, что необходимо учитывать при расчете питающей сети и защитных устройств. Практическая невозможность обеспечить форсированный обогрев, например, для быстрого нагрева помещения.

Основные области использования

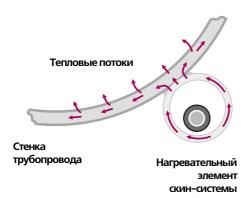
Трубопроводы, кровли. Перспективны для применения в теплых полах при снижении цены в серийном производстве. Единственный тип кабеля, пригодный для обогрева пола в помещениях со взрывоопасными условиями.

Скин-кабели, применяемые в скин-системах

Принцип действия основан на явлении скин-эффекта в ферромагнитном материале на промышленной частоте. Тепло выделяется в основном в стальной трубке, внутри которой располагается изолированный кабель. Благодаря скин-эффекту ток течет по внутренней поверхности трубки, потенциал снаружи отсутствует. Запитываются с одного конца.

Преимущества

Благодаря отсутствию наружного потенциала скинтрубки не требуют электрической изоляции и могут привариваться непосредственно к обогреваемому объекту, что обеспечивает наилучший тепловой контакт. При этом достигается полная электробезопасность. Большая (до 20 км) длина обогреваемого участка. При соответствующих соединительных и оконечных муфтах возможно использование во взрывоопасных зонах и при подводной прокладке.


Недостатки

Большие габариты и жесткость скин-трубок ограничивает их область применения магистральными трубопроводами. Необходимость использования высоковольтных источников питания для обогрева длинных участков трубы.

Основные области использования

Сверхдлинные трубопроводы.

Принцип действия скин-эффекта

Классификация по конструктивному исполнению

Исполнения нагревательных кабелей отличаются наличием и материалом: изоляции, защитного экрана и наружной оболочки. Исполнения определяет уровень защищенности кабеля от влияния окружающей среды и его рабочую температуру.

Для саморегулирующихся и зональных кабелей принята следующая система обозначения исполнений (на примере кабеля FSLe):

FSLe

Базовая конструкция кабеля без оплетки и наружной оболочки. Применяется в безопасных условиях (обогрев голых металлических поверхностей при сухом воздухе без разъедающих примесей);

FSLe..C

Конструкция с оплеткой из луженой медной проволоки. Применяется для обогрева пластмассовых или окрашенных поверхностей (отсутствие надежного контакта с землей) или для обеспечения большей механической прочности. Наличие оплетки обязательно для кабеля, применяемого во взрывоопасной зоне.

FSLe..CT

Конструкция с оболочкой из термопластика поверх оплетки, обеспечивающая ее защиту от воздействия некоррозионной окружающей среды.

FSLe..CF

Конструкция с оболочкой из фторполимера поверх оплетки, обеспечивающая защиту от коррозионной окружающей среды (едкие химические растворы, пары). Такой оболочкой (и внутренней изоляцией) снабжаются большинство кабелей, рассчитанных на температуры 100—200°С.

В кабелях расчитанных на температуры выше 250°С (напр. PHT) используется также оплетка из никелированной проволоки. В обозначении вариантов тогда фигурирует буква N вместо С. Если отмечается наличие оплетки в варианте, не конкретизируя ее материал, используется буква X: ..X, ..XF.

Кроме того, применяется исполнение с оболочкой из кремнийорганической резины поверх оплетки (в зональных кабелях), оно обозначается .. СS и обеспечивает теплостойкость до 200°С в некоррозионной окружающей среде.

Классификация нагревательных кабелей по температурному диапазону

Низкотемпературные (до 100°C)

Большинство кабелей для обогрева помещений, открытых площадок, крыш и трубопроводов (резистивные, саморегулирующиеся, зональные).

Среднетемпературные (до 250°C)

Зональные кабели, в основном для обогрева трубопроводов, резервуаров. Резистивные кабели для обогрева технологического оборудования марки СНО, СНС. Саморегулирующиеся кабели марок FSP и FSS.

Высокотемпературные (до 1000°C)

Зональный кабель марки АНТ. Кабели с минеральной изоляцией (до 350°C). Высокотемпературные резистивные кабели для обогрева технологического оборудования марок ВНО и ВНС.

Основные характеристики нагревательных кабелей

Марка	Тип конс-		И	сполне	ние		Макс. длина		абочее яжени		Тепло- выде-	Тем	иперату	pa,°C
	трук- ции	Осн.	C, X, N	CT, XT, T	CF, XF, NF	CS	секции, м	220- 240	380	В	ление, Вт/м	Макс. рабо- чая	Макс. без нагр.	Мин. мон- тажа
						Низі	котемпера	гурные						
НО	Р			(x)			125*	Х	0		15-20	100	100	-10
БНО	Р			(x)			100	Х	0		15-25	100	100	-10
НБ	РБ		(x)				550*	Х	Х		20-40	130	130	-20
БНБ	РБ		(x)				258	Х	Х		20-40	130	130	-20
FSM	С	Х		Х			128	Х			12-17	65	85	-30
FSLe	С	Х	Х	Х			180	Х			11-23	65	85	-30
GTe	C			(x)	Х		90	Х			18-39	65	85	-30
FSR	С	Х	Х	Х	х		198	Х			10-35	65	85	-30
HW-R	С	Х		Х			135	Х			9,5	100	85	-10
HW-P	С	Х		Х	Х		110	Х			13	100	85	-10
SM-A	С			(x)			80	Х			28	65	85	0
SM-B	С			(x)			50	Х			81	100	105	0
						Сред	нетемпера	турные	ة					
FSS	С	x	х		x		162	x			15-55	120	200	-30
FSP	С	Х	Х		х		154	Х			17-50	110	135	-30
EMTS	3	Х	Х		Х	Х	164	Х			6,5-50	190	200	-80
EMTF	3	Х	Х		х		164	Х			6,5-70	190	200	-80
MTFJ	3	Х	Х		Х		212	Х			6,5-50	190	200	-40
MTSS	3	Х	Х		Х	Х	198	Х			6,5-66	190	200	-80
HTS1F	РЛ	Х	Х		Х	Х	5000			Х	10-60	218	230	-40
HTS3F	РЛ	Х	Х		Х	Х	2000			Х	10-60	218	230	-40
CHO	Р	Х	(x)O		(x)O		65	Х	0		24-40	200	200	-10
KCC	скин	X					200			x	10-40	200	200	-40
						Высс	котемпера	турные	5		•			
PHT	3	Х	х		Х		152	Х			10-70	275	285	-40
AHT	3	Х					144	Х			10-150	340	350	-40
вно	Р	Х					19,3	Х	0		86-370	1000	1000	-40
ВНС	PC	Х					0,5-4,1	Х	0		170-470	1000	1000	-40

Примечания:

- Для кабелей HW приводится тепловыделение при +65°C, для остальных при 0°C.
- Указанные длины нагревательных секций могут состоять из отрезков кабеля, соединенных последовательно с помощью муфт.
- Все саморегулирующиеся и зональные кабели выпускаются также на рабочее напряжение 110—120 В.
- Резистивные кабели могут быть изготовлены по заказу на любой номинальное напряжение, ограниченное пробивной прочностью изоляции.
- В обозначениях исполнений С означает оплетку из медных проволок, N- из никелированных, X-ка-кой-либо из этих вариантов. T- оболочку из термопластика, F- из фторполимера, S- из кремний-органической резины.

- **В** Высокое напряжение (до нескольких кВ), зависящее от длины нагревательной секции.
- (x) базовая конструкция кабеля близка к данному типу исполнения.
- О по заказу.
- Р резистивные кабели;
- **РБ** резистивные бронированные;
- РЛ резистивные типа Лонглайн;
- РС резистивные спиральные;
- С саморегулирующиеся;
- **3** зональные.

^{*)} Кабели для обогрева футрбольных полей и спортивных площадок имеют длину 400—500 м.

Рекомендации по выбору нагревательных кабелей

Выбор кабеля определяется типом объекта, его конструкцией условиями эксплуатации (требуемой поддерживаемой температурой, теплопотерями и теплоизоляцией объекта обогрева), особенностями обогреваемого объекта и окружающей среды (взрывоопасность, коррозионность, солнечная радиация). В общем случае для выбора кабеля необходим тепловой расчет системы обогрева, описанный в специальных руководствах. Компания ССТ выполняет его по данным, предоставляемым заказчиком. Далее приводятся общие соображения по выбору нагревательных кабелей для разных применений.

Тип объекта,	Тип и марка применяемого кабеля					
назначение систем обогрева	Резистивные	Саморегу- лирующиеся	Зональные	Скин-кабель		
Теплые полы, холодильные камеры	но, бно, нб, бнб	FSM				
Футбольные поля,	НО, НБ, БНБ					
беговые дорожки, корты						
Дороги, пандусы, лестницы,	НБ, БНБ, SM-В					
теплицы, тротуары, холодильные						
камеры, взлетно-посадочные полосы						
Линии сушки	НБ, БНБ					
железобетонных изделий						
Водосточные трубы до 50 м,		FSLe, FSR, GTe,				
желоба, лотки, ендовы, капельники		SM-A, SM-B				
Водосточные трубы свыше 50 м,	НБ	SM-B	EMTS, MTSS			
плоские крыши с бетонными						
или асфальтовым покрытием						
Водопроводы и баки питьевой воды		HW-R, HW-P				
с прогревом для обеззараживания						
Трубопроводы и резервуары,	НБ	FSLe, FSR, GTe,				
защита от замерзания		SM-A, SM-B				
Трубопроводы и резервуары,	НБ, СНО	FSR, FSS, FSP	EMTS, MTSS,			
поддержание температуры,			EMTF, MTF,			
технологический обогрев			PHT, AHT			
Магистральные трубопроводы	HTS1F, HTS3F			KCC		
Газоанализаторные трубки		FSM, FSLe				
Железнодорожные рельсы, стрелки	НБ, БНБ		AHT			
Узлы кондиционеров	HKK*	FSM, FSLe				
Узлы технологического	BHO, BHC, CHO					
оборудования (экструдеры,						
пресс-формы, трубки и др.)						

Примечания:

Для взрывоопасных зон обязательно применение кабелей с экранирующей оплеткой (исполнения ..C, ..N, ..X, ..СТ, ..NT, ..XT, ..CF, ..NF, ..XF, ..CS, ..NS) и аксессуаров, сертифицированных для такого использования.

Для эксплуатации в коррозионной окружающей среде требуется наличие оболочки из фторполимера (исполнения ..F, ..CF, ..NF, ..XF).

^{*)} Специальный нагреватель, одеваемый на картер компрессора кондиционера.

Рекомендуемые мощности

Тип объекта,	Удельная мощность	Линейная мощность нагревательного кабеля, Вт/м				
назначение систем обогрева	системы обогрева, Вт/м ²	Резистивные	Саморегу- лирующиеся	Зональные		
Теплые полы	100-150	15-20	11—17			
Теплые полы,	140-200	15-25				
аккумулирующие тепло						
Холодильные камеры	5-15	3-5				
Футбольные поля	90-110	16-18				
Беговые дорожки	150-200	20-30				
Теплицы	100-120	10-15				
Дороги, пандусы	250-300	25-35	80			
Лестницы	300-400	25-35	80			
Водосточные системы	150-250	20-30	17-80	30-50		
Трубопроводы	10-40*	10-20	10-30			
с холодной водой						
Нефтепроводы	20-80*	15-25	17-55	20-60		
Резервуары	30-100	15-25	25-55	20-30		
Технологическое	100-500	100-250	25-55	20-60		
оборудование						

st) Удельная мощность систем обогрева для трубопроводов дана в ${
m BT/M}$.

Нагревательные секции и аксессуары*

Все нагревательные кабели используются в виде нагревательных секций — отрезков нагревательного кабеля определенной длины, зависящей от характеристик кабеля, напряжения питания и размеров обогреваемой области. На концах секции оснащены соединительными и концевыми муфтами. Соединительные муфты служат для подключения проводов питания («холодных концов») и, при необходимости, других нагревательных секций. Концевые муфты изолируют и герметизируют дальний конец кабеля, питаемого с одного конца. В двух- и трехжильных резистивных кабелей в концевой муфте производится соединение жил для двух- или трехфазной схемы питания.

Фирма ССТ поставляет готовые нагревательные секции и все необходимые аксессуары для их заделки и монтажа. К ним относятся наборы для соединительных и оконечных муфт, устройства ввода кабеля под теплоизоляцию, монтажные коробки с кронштейнами для крепления, соединители отрезков кабеля UNI-CLIP, крепежные хомуты и клеящие ленты, предупреждающие наклейки, а также установочные провода для подвода напряжения к нагревательным секциям.

На нагревательные секции имеются все необходимые сертификаты, в том числе для использования во взрывоопасных зонах.

 ^{*)} Аксессуары для заделки и монтажа кабельных секций приведены в разделе «Аксессуары».

НИЗКОТЕМПЕРАТУРНЫЕ КАБЕЛИ

HO

Электрический нагревательный кабель для подогреваемых полов, подогрева грунта в теплицах и парниках, а также подогрева грунта футбольных полей и других спортивных сооружений

ТЕПЛОЛЮКС

- Рабочая температура до 100°C
- Линейное тепловыделение до 25 Вт/м
- Полный набор средств управления и вспомогательных принадлежностей
- Выпускается на рабочее напряжение ~220 и 380 В переменного тока

Особенности

Нагревательные кабели НО предназначены для обогрева помещений в жилых и производственных зданиях всех категорий в составе систем «ТЕПЛОЛЮКС». Могут использоваться для обогрева теплиц, футбольных полей и других спортивных сооружений.

Поставляются в виде готовых нагревательных секций с «холодными концами» и муфтами.

Монтаж нагревательных секций на объекте занимает мало времени и не сложен. Для ускорения монтажа прилагаются специальные монтажные ленты.

Варианты исполнения

для укладки в цементную стяжку

HO-3, HO-13, HO-17, HO23

Конструкция с двухслойной изоляцией из сшитого полиэтилена, в экране с цветной оболочкой из ПВХ-пластиката

HO-33, HO-43, HO-55

Конструкция с двухслойной изоляцией из теплостойкого ПВХ-пластиката, в экране с цветной оболочкой из ПВХ-пластиката

для укладки в грунт

HO-15

Конструкция с двухслойной изоляцией из сшитого полиэтилена, в экране с оболочкой из светостабилизированного полиэтилена

HO-45

Конструкция с двухслойной изоляцией из теплостойкого ПВХ-пластиката, в экране с оболочкой из светостабилизированного полиэтилена

Технические характеристики

Максимальная
температура жилы100°C
Максимально допустимая температура без нагрузки
Минимальная
температура монтажа10°С
Электропитание~220-240 В (~380 В по заказу)
Сопротивление изоляции
не менее
Минимальный радиус изгиба при эксплуатации и хранении

Конструкция

Нагревательная жила — сталь оцинкованная, латунь, медь, сплав высокого сопротивления. Изоляция проводника (2 слоя) — облученный полиэтилен, теплостойкий ПВХ-пластикат. Оплетка, сечение 1 кв.мм — медная проволока. Наружная оболочка — поливинилхлорид, светостабилизированный полиэтилен. Испытательное напряжение изоляции — 3750 В.

Технические и габаритные характеристики

Марка кабеля	Число и диаметр проволок нагревательной жилы, мм	Ном. наружный диаметр провода, мм	Сопротивление жилы Ом/м	Материал жилы
HO-3	1x0,3	5,3	19,8	
HO-33	1x0,5	5,5	7,13	сплав
	1x0,8	5,8	2,79	
HO-13	3x0,25	5,5	1,43	
HO-43	4x0,25	5,6	1,07	сталь
HO-15	7x0,25	5,8	0,62	оцинк.
HO-45	10x0,25	6,0	0,43	
	10x0,30	6,2	0,30	
HO-17	7x0,25	5,8	0,22	латунь
	10x0,25	6,0	0,15	
HO-23	7x0,28	5,7	0,041	медь
HO-55		5,7		

Сертификация

- Сертификат соответствия № РОСС RU.AЮ64.B00359
- © Сертификат пожарной безопасности № ССПБ RU.ОП019.В00030
- © Сертификат соответствия
 № РОСС RU.ГБ05.В00324 с маркировкой взрывозащиты 2ExelIT6 X
- Сертификат соответствия на нагревательные секции на основе кабелей НО для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068

Информация для заказа

Пример

Нагревательные секции на основе кабелей НО

Тепловыделение и параметры нагревательных секций «ТЕПЛО-ЛЮКС» $U_{Pa6} = 220~B$ на основе кабелей НО для укладки в стяжку приведены в таблице:

Тип секции	Тепло- выделение, Вт/м	Длина секции, м	Мощность секции, ВТ
ТЛЭ-19	14,6	13	190
ТЛЭ-33	15,7	21	330
ТЛЭ-59	19,7	30	590
ТЛЭ-70	18,4	38	700
ТЛЭ-80	19,0	42	800
ТЛЭ-90	18,8	48	900
ТЛЭ-105	21,0	50	1050
ТЛЭ-120	19,0	63	1200
ТЛЭ-140	18,7	75	1400
ТЛЭ-180	20,0	90	1800
ТЛЭ-210	20,0	105	2100
ТЛЭ-250	20,0	125	2500

Принадлежности

Нагревательные секции «ТЕПЛО-ЛЮКС» поставляются с монтажной лентой, теплоизоляцией, терморегуляторами.

БНО

Электрический двухжильный нагревательный кабель с особо низким уровнем электромагнитных полей для подогреваемых полов в жилых помещениях

ТЕПЛОЛЮКС ЕСО

- Уровень электромагнитного излучения в 300 раз ниже предельно допустимой нормы
- Рабочая температура до 100°C
- Линейное тепловыделение до 25 Вт/м
- Полный набор средств управления и вспомогательных принадлежностей
- Выпускается на рабочее напряжение ~220 и 380 В переменного тока

Особенности

Нагревательные кабели БНО предназначены для обогрева помещений в жилых и производственных помещениях всех категорий с постоянным пребыванием людей, в составе системы «ТЕПЛОЛЮКС». Могут использоваться для прокладки в полах, потолках, стенах при условии размещения в бетонном монолите.

Поставляются в виде готовых нагревательных секций с «холодными концами» и муфтами.

Монтаж секций упрощен за счет того, что «холодные концы» имеются только с одной стороны секции.

Монтаж нагревательных секций на объекте занимает мало времени и не сложен. Для ускорения монтажа прилагаются специальные монтажные ленты.

Технические характеристики

Максимальная
температура жилы
Максимально допустимая
температура без нагрузки
Минимальная
температура монтажа10°С
Электропитание~220-240 В
(~380 В по заказу)
Сопротивление изоляции
не менее
Минимальный радиус изгиба
при эксплуатации и хранении
Минимальный допустимый
радиус однократного изгиба

Конструкция

Нагревательная жила — многопроволочная, из сплава высокого сопротивления или из стальной оцинкованной проволоки.

Вспомогательная токопроводящая жила — многопроволочная, из медных отожженных проволок. Изоляция — сплошная из теплостойкого ПВХ-плас-

Изоляция — сплошная, из теплостойкого ПВХ-пластиката.

Оплетка — медная отожженная проволока.

Наружная оболочка— сплошная, из ПВХ-пластиката.

Испытательное напряжение изоляции — 3750 В.

Технические и габаритные характеристики

Марка кабеля	Число и диаметр проволок нагревательной жилы, мм	Ном. наружный диаметр провода, мм	Сопротивление жилы Ом/м	Материал жилы
БНО	2x0,3	5,3x7,6	9,93	
	3x0,3	5,3x7,6	6,62	сплав
	4x0,3	5,3x7,6	4,47	высокого
	2x0,5	5,3x7,6	3,58	сопрот.
	3x0,5	5,3x7,6	2,38	
БНО	3x0,25	5,3x7,6	1,43	
	4x0,25	5,3x7,6	1,07	сталь
	7x0,25	5,3x7,6	0,62	оцинк.
	10x0,25	5,3x7,6	0,43	
БНО	7x0,25	5,3x7,6	2,28	латунь

Сертификация

- © Сертификат соответствия № РОСС RU.AЮ64.B00360
- © Сертификат соответствия
 № РОСС RU.ГБ05.В00324 с маркировкой взрывозащиты 2ExelIT6 X
- © Сертификат пожарной безопасности № ССПБ RU.ОП019.В00030
- Гигиеническое заключение на нагревательные секции на основе кабелей БНО
 № 77.ФЦ.12.355.П.1398.12.99

Информация для заказа

Пример

	БНО 2x0,3
Кабель серии БНО ———	——— <u> </u>
Нагревательная жила	
из двух проволок	
Диаметр жилы 0,3 мм —	

Нагревательные секции на основе кабелей БНО

Тепловыделение и параметры нагревательных секций «ТЕПЛОЛЮКС» $U_{P^{36}} = 220 \text{ B}$ на основе кабелей БНО для укладки в стяжку приведены в таблице:

Тип секции	Тепловы- деление, Вт/м		Мощность секции, ВТ
ECO 5-100	18,9	5,3	100
ECO 18-270	15,0	18	270
ECO 21-340	16,2	21	340
ECO 23-420	18,3	23	420
ECO 26-520	20,0	26	520
ECO 32-630	19,7	32	630
ECO 42-800	19,0	42	800
ECO 48-900	18,8	48	900
ECO 63-1200	19,0	63	1200
ECO 75-1400	18,7	75	1400
ECO100-2000	20,0	100	2000

Принадлежности

Нагревательные секции «ТЕПЛО-ЛЮКС» поставляются с монтажной лентой, теплоизоляцией, терморегуляторами.

www.sst.ru

НБ

Электрический нагревательный кабель с мощной двухповивной проволочной броней для обогрева дорог, трубопроводов, водостоков

ТЕПЛОДОР БРОНИРОВАННЫЙ

- Рабочая температура до 130°C
- Линейное тепловыделение до 40 Вт/м
- Повышенная устойчивость к тепловым перегрузкам
- Максимальная устойчивость к поперечным и продольным механическим нагрузкам
- Выпускается на рабочее напряжение ~220 и 380 В переменного тока

Особенности

Нагревательный кабель НБ предназначен для обогрева объектов, в процессе строительства или эксплуатации которых возможны механические воздействия на кабель. За счет значительной массы металлической брони и небольшого термического сопротивления, кабель НБ обладает повышенной устойчивостью к тепловым перегрузкам, что позволяет упростить монтаж, уточняя длину секции по месту.

Кабель может использоваться для укладки в поверхность обогреваемых дорог, пандусов, ступеней, вдоль трубопроводов и в составе систем обогрева водостоков «ТЕП-ЛОСКАТ».

Поставляются в виде готовых нагревательных секций с «холодными концами» и муфтами.

Технические характеристики

Максимальная
температура жилы
Максимально допустимая температура без нагрузки
Минимальная температура монтажа20°C
Электропитание~220—240 В (~380 В по заказу)
Сопротивление изоляции не менее
Минимальный радиус изгиба при эксплуатации и хранении
Минимальный допустимый радиус однократного изгиба80 мм

Конструкция

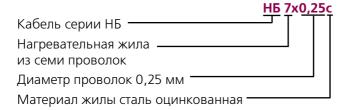
Нагревательная жила — многопроволочная, из стальных оцинкованных или медных проволок*. Изоляция — двухслойная из сополимера полипропилена.

Броня— двухповивная из стальных оцинкованных проволок.

. Испытательное напряжение изоляции — 3750 В.

^{*)} Кабели с медными жилами применяются также в качестве бронированных «холодных концов» в секциях с нагревательной жилой из стальных проволок.

Технические и габаритные характеристики


Марка кабеля	Число и диаметр проволок нагревательной жилы, мм	Ном. наружный диаметр провода, мм	Сопротивление жилы Ом/м	Материал жилы
НБ	3x0,25 4x0,25 7x0,25 10x0,25 10x0,30	8,50 8,50 8,50 8,50 8,50	1,45 1,08 0,62 0,43 0,30	сталь оцинк.
НБ	7x0,28 7x0,37 7x0,52 7x0,67 7x0,85	8,50 8,50 8,50 8,50 8,50	0,041 0,025 0,014 0,008 0,0045	медь

Сертификация

- © Сертификат соответствия № РОСС RU.ME67.B00636
- © Сертификат соответствия
 № РОСС RU.ГБ05.В00324 с маркировкой взрывозащиты 2ExelIT6 X
- © Сертификат пожарной безопасности № ССПБ RU.ME01x.B00148
- Гигиеническое заключение на нагревательные секции на основе кабелей НБ
 № 77.ФЦ.12.355.П.1398.12.99

Информация для заказа

Пример

Нагревательные секции на основе кабелей НБ

Параметры нагревательных секций $U_{pa6} = 220 \ B$ на основе кабелей НБ приведены в таблицах:

Системы «ТЕПЛОДОР»,
$$U_I = 35 \text{ BT/m}, t_{\text{окр}} = 5 ^{\circ}\text{C}$$

Тип секции	Длина секции, м	Мощность секции, ВТ	Стартовая мощность при 5°с, Вт
НБ 3х0,25с	28	975	1280
НБ 4х0,25с	33	1108	1450
НБ 7х0,25с	43	1500	1945
HБ 10x0,25c	52	1790	2300
НБ 10х0,30 с	63	2145	2730
<u>НБ 7х0,28м</u>	160	5540	7900
НБ 7х0,37м	215	7470	10270
НБ 7х0,52м	304	10618	14345
НБ 7х0,67м	395	13760	18328
НБ 7х0,85м	500	17600	23300

Системы «ТЕПЛОСКАТ», $U_I = 30 \text{ BT/m}, t_{OKD} = 5^{\circ}\text{C}$

Тип секции	Длина секции, м	Мощность секции, ВТ	Стартовая мощность при 5°с, Вт
НБ 3х0,25с	30	898	1195
НБ 4х0,25с	35	1030	1365
НБ 7х0,25с	47	1355	1780
НБ 10х0,25с	56	1635	2135
НБ 10х0,30с	67	1980	2570
НБ 7х0,28м	178	5300	6670
НБ 7х0,37м	230	6825	9600
НБ 7х0,52м	325	9670	13415
НБ 7х0,67м	420	12540	17195
НБ 7х0,85м	550	16600	21200

БНБ

Двухжильный электрический нагревательный кабель с мощной двухповивной проволочной броней для обогрева дорог, трубопроводов, водостоков

ТЕПЛОДОР БРОНИРОВАННЫЙ БИНАРНЫЙ

- Рабочая температура до 130°C
- Линейное тепловыделение до 50 Вт/м
- Повышенная устойчивость к тепловым перегрузкам
- Максимальная устойчивость к поперечным и продольным механическим нагрузкам
- Выпускается на рабочее напряжение ~220 и 380 В переменного тока

Особенности

Нагревательный кабель БНБ предназначен для обогрева объектов, в процессе строительства или эксплуатации которых возможны механические воздействия на кабель.

За счет значительной массы металлической брони и небольшого термического сопротивления, кабель БНБ обладает повышенной устойчивостью к тепловым перегрузкам, что позволяет упростить монтаж, уточняя длину секции по месту.

Кабель может использоваться для укладки в поверхность обогреваемых дорог, пандусов, ступеней, вдоль трубопроводов и в составе систем обогрева водостоков «ТЕП-ЛОСКАТ».

Поставляются в виде готовых нагревательных секций с «холодными концами» и муфтами.

Двухжильная конструкция позволяет производить подключение кабеля к питающей электрической сети с одной стороны.

Технические характеристики

Конструкция

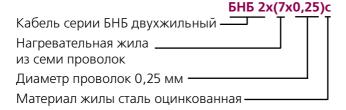
Нагревательная жила — многопроволочная, из стальных оцинкованных или медных проволок*. Изоляция — двухслойная из сополимера полипропилена.

Броня— двухповивная из стальных оцинкованных проволок.

Испытательное напряжение изоляции — 3750 В.

^{*)} Кабели с медными жилами применяются также в качестве бронированных «холодных концов» в секциях с нагревательной жилой из стальных проволок.

Технические и габаритные характеристики


Марка кабеля	Число и диаметр проволок нагревательной жилы, мм	Ном. наружный диаметр провода, мм	Сопротивление одной жилы Ом/м	Материал жилы
БНБ	2x(7x0,25)	11,3	0,62	сталь
	2x(10x0,25)	11,3	0,43	оцинк.
	2x(10x0,30)	11,3	0,30	
БНБ	2x(7x0,37)	11,3	0,025	медь
	2x(7x0,52)	11,3	0,014	

Сертификация

- © Сертификат соответствия № РОСС RU.ME67.B00636
- © Сертификат соответствия
 № РОСС RU.ГБ05.В00324 с маркировкой взрывозащиты 2ExelIT6 X
- © Сертификат пожарной безопасности № ССПБ RU.ME01x.B00148

Информация для заказа

Пример

Нагревательные секции на основе кабелей БНБ

Параметры нагревательных секций $U_{pa6} = 220 \ B$ на основе кабелей БНБ приведены в таблицах:

Системы «ТЕПЛОДОР»,
$$U_I = 35 \text{ BT/m}, t_{\text{окр}} = 5 ^{\circ}\text{C}$$

Тип секции	Длина секции, м		Стартовая мощность при 5°с, Вт
БНБ2х(7х0,25)с	30	1050	1357
БНБ2х(10х0,25)с	37	1295	1636
БНБ2х(10х0,30)с	45	1575	1950
БНБ2х(7х0,37)м	152	5320	7260
БНБ2х(7х0,52)м	216	7560	10190

Системы «ТЕПЛОСКАТ», $U_I = 30 \text{ BT/m}, t_{okp} = 5^{\circ}\text{C}$

Тип секции	Длина секции, м	Мощность секции, ВТ	Стартовая мощность при 5°с, Вт
БНБ2х(7х0,25)с	33	990	1250
БНБ2х(10х0,25)с	40	1200	1525
БНБ2х(10х0,30)с	48	1440	1840
БНБ2х(7х0,37)м	163	4890	6800
БНБ2х(7х0,52)м	230	6900	9495

Системы «ТЕПЛОМАГ», $U_I = 30 \text{ BT/m}, t_{\text{окр}} = 5^{\circ}\text{C}$

Тип секции	Длина секции, м	Мощность секции, ВТ	Стартовая мощность при 5°с, Вт
БНБ2х(7х0,25)с	37	925	1130
БНБ2х(10х0,25)с	45	1125	1355
БНБ2х(10х0,30)с	54	1350	1610
БНБ2х(7х0,37)м	183	4575	11424
БНБ2х(7х0,52)м	258	6450	15964

www.sst.ru

FSM

Саморегулирующаяся электрическая нагревательная лента для защиты от замерзания или поддержания заданной температуры трубопроводов и резервуаров в строительной промышленности

ФРИЗСТОП МИКРО

- Автоматически регулирует тепловыделение в ответ на повышение или понижение температуры трубы
- Может быть отрезана нужной длины без ущерба для характеристик
- Не перегреется и не перегорит даже при самопересечении
- Одобрена для использования в опасных областях
- Идеально подходит для обогрева оборудования и труб малого диаметра
- Выпускается на рабочее напряжение ~ 220—240 В и ~110—120 В по заказу

Особенности

FSM (Фризстоп Микро) — это промышленного качества саморегулирующаяся нагревательная лента, которая может использоваться для защиты от замораживания или поддержания заданной температуры трубопроводов и резервуаров.

Она особенно подходит для труб малого диаметра и трубок оборудования, таких как импульсные трубки и трубки анализаторов.

Она может быть отрезана до нужной длины по месту, точно в соответствии с длиной трубопровода, без каких-либо конструктивных сложностей.

FSM одобрена для использования в безопасных и опасных областях согласно Евронормам стандартов EN.

Характеристики саморегулирования повышают безопасность и надежность ленты. Фризстоп Микро не будет перегреваться или перегорать, даже когда ее отдельные участки накладываются друг на друга. Ее тепловыделение саморегулируется в ответ на изменение температуры трубы.

Установка нагревательной ленты проста, занимает мало времени и не требует никаких специальных навыков или инструментов. Все компоненты для заделки концов, соединения и подключения питания имеются в удобных наборах.

Варианты исполнения

FSM...XT

Конструкция с оболочкой из термопластика поверх оплетки, для обеспечения дополнительной защиты.

FSM...XF

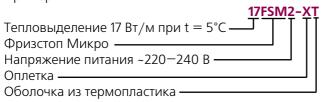
Конструкция с оболочкой из фторполимера поверх оплетки обеспечивает защиту в местах, где могут присутствовать коррозионные химические растворы или пары.

Технические характеристики

Сертификация

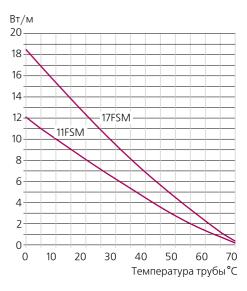
ϵ

- **CENELEC** Сертификат № SCS Ex 99E3147 Код Eex e II T6 Стандарт EN50014:1992 & EN50019:1994 Зона 1 и Зона 2
- SEMCO Сертификат № 983707/01-02 Тип 65СМ Стандарт SS 424 24 11
- © Сертификат соответствия на нагревательные ленты FSM2-C, FSM2-CT и FSM2-CF № РОСС RU.ГБ05.В00321 с маркировкой взрывозащиты 2ExeIIT6 X


Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом С автоматических выключателей по стандарту BS EN 60 898:1991

Марка кабеля	Температура включения,	Стартовый ток*,	230 B			
каоеля	°С	А/м	6 A	10 A	16 A	20 A
11FSM	5	0,073	76	126	128	_
	0	0,081	70	118	128	_
	-20	0,111	46	78	124	128
	-40	0,140	36	60	96	120
17FSM	5	0,103	54	88	102	_
	0	0,114	50	84	102	_
	-20	0,156	34	56	88	102
	-40	0,198	26	42	68	86


Информация для заказа

Пример

Температурные характеристики

Нормальное тепловыделение при 230 В с FSM, установленной на теплоизолированной трубе.

Принадлежности

Фирма поставляет полный набор принадлежностей, включая наборы для концевой заделки/соединения, оконечные уплотнения, монтажные коробки и утройства управления. Эти изделия рекомендуется использовать для нормальной работы нагревательных лент FSM.

^{*)} Нормированная продолжительность 300 с.

FSLe

Саморегулирующаяся электрическая нагревательная лента для защиты от замерзания или поддержания заданной температуры трубопроводов и резервуаров в строительной промышленности

ФРИЗСТОП ЛАЙТ экстра

- Автоматически регулирует тепловыделение в ответ на повышение или понижение температуры трубы
- Может быть отрезана нужной длины без ущерба для характеристик
- Не перегреется и не перегорит даже при самопересечении
- Проверена на соответствие российским стандартам для использования в обычной, опасной и коррозионной окружающих средах
- Выпускается на рабочее напряжение
 220—240 В и ~110—120 В по заказу

Особенности

FSLe (Фризстоп Лайт экстра) — это промышленного/коммерческого качества саморегулирующаяся нагревательная лента, которая может использоваться для защиты от замораживания или поддержания заданной температуры трубопроводов и резервуаров в строительной и холодильной промышленностях.

Она может быть отрезана до нужной длины по месту, точно в соответствии с длиной трубопровода, без каких-либо конструктивных сложностей.

Характеристики саморегулирования повышают безопасность и надежность ленты. Фризстоп Лайт экстра не будет перегреваться или перегорать, даже когда ее отдельные участки накладываются друг на друга. Ее тепловыделение саморегулируется в ответ на изменение температуры трубы.

Установка нагревательной ленты проста, занимает мало времени и не требует никаких специальных навыков или инструментов.

По заказу может поставляться в виде нагревательных секций, готовых к подключению, марок ССБЭ и СМБЭ.

Варианты исполнения

FSLe

Базовая конструкция нагревателя без оплетки.

FSLe...C

Конструкция с оплеткой из луженой медной проволоки для дополнительной механической защиты или для использования в местах, где обогреваемое оборудование не обеспечивает эффективного заземления, например — трубопроводы из пластмассы.

FSLe...CT

Конструкция с оболочкой из термопластика поверх оплетки из луженой медной проволоки, обеспечивающий защиту в местах, где могут присутствовать коррозионные химические растворы или пары. Отвечает требованиям VDE.

FSLe...CF

Конструкция с оболочкой из фторполимера поверх оплетки из луженой медной проволоки, обеспечи-

вающий защиту в местах, где могут присутствовать коррозионные химические растворы или пары. Отвечает требованиям VDE.

Технические характеристики

Максимальная температура
Максимально допустимая температура без нагрузки (1000 часов суммарно)
Минимальная температура монтажа30°C
Электропитание~220—240 В (~110—120 В по заказу)
Максимальное сопротивление защитной оплетки
Габариты 3,9×8,5 мм FSLeC 4,7×9,3 мм FSLeCT 5,9×10,5 мм FSLeCF 5,9×10,5 мм
Минимальный радиус изгиба FSLe .25 мм FSLeC .30 мм FSLeCT .35 мм FSLeCF .35 мм

Сертификация

ϵ

- Российский Сертификат Соответсвия на ленты FSLe № РОСС GB.AЮ64.A00483, на нагревательные секции на их основе № РОСС RU.AЮ64.B00356
- © Сертификат Пожарной Безопасности ГПС МВД России № ССПБ GB.ОП019.A00005
- © Сертификат соответствия на нагревательные ленты FSLe2-C, FSLe2-CT и FSLe2-CF № POCC RU.ГБ05.В00321 с маркировкой взрывозащиты 2ExelIT6 X
- Нагревательные секции марки СМБЭ на основе лент FSLe-С сертифицированы для использования на взрывоопасных объектах. Сертификат Соответствия № РОСС RU.ГБ05.В00068
- © Гигиеническое заключение на нагревательные секции марки СМБЭ № 77.ФЦ.12.355.П.1398.12.99

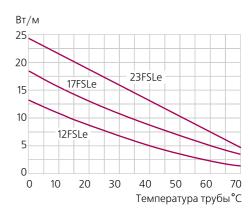
Информация для заказа

Пример

<u>12FSLe2</u> -	<u> CT</u>
Тепловыделение 12 Вт/м при t = 5°C — Т	T
Фризстоп Лайт экстра — — — — — — — — — — — — — — — — — — —	Ш
Напряжение питания ~220—240 В —————	Ш
Оплетка из луженой медной	Ш
проволоки	-
Оболочка из термопластика —	

Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом С автоматических выключателей по стандарту BS EN 60 898:1991


Марка	Темп.	Старт.	230 B		
кабеля	вкл.,	ток*,			
Raocini	°C	А/м	6 A	10 A	16 A
12FSLe	10	0,061	90	152	180
	5	0,076	78	132	180
	0	0,081	74	124	180
	-20	0,106	56	94	150
	-40	0,100	46	76	124
17FSLe	10 5 0 -20	0,100 0,076 0,096 0,101 0,123 0,144	70 62 60 48 42	116 104 100 82 70	146 146 146 146 130 112
23FSLe	10	0,114	48	80	130
	5	0,130	46	76	124
	0	0,141	42	70	114
	-20	0,181	34	56	88
	-40	0,222	28	46	72

Коэффициент изменения тепловыделения

Напря- жение, В	12FSLe2	17FSLe2	23FSLe2
208	0,86	0,87	0,90
220	0,94	0,94	0,95
230	1,00	1,00	1,00
240	1,06	1,06	1,05
250	1,13	1,11	1,09
277	1,30	1,27	1,22

Температурные характеристики

Номинальное тепловыделение при 115 или 230 В с FSLe, установленной на теплоизолированной металлической трубе.

^{*)} Нормированная продолжительность 300 с.

www.sst.ru

GTe

Саморегулирующаяся электрическая нагревательная лента для защиты крыш и желобов от скопления снега и льда

G-ТРЕЙС

- Автоматически регулирует тепловыделение в ответ на повышение или понижение температуры трубы
- Может быть отрезана нужной длины без ущерба для характеристик
- Не перегреется и не перегорит даже при самопересечении
- Выпускается на рабочее напряжение
- ~ 220—240 В и ~110—120 В по заказу

Особенности

Саморегулирующиеся характеристики нагревательных лент означают, что кабель может корректировать свое тепловыделение в соответствии с окружающей температурой. Находясь в снегу и талой воде, GTe (G-Трейс) работает на полную мощность. Когда снег тает и талая вода утекает, G-Трейс саморегулируется до половинной мощности, пока высыхает. Когда становится теплее, GTe еще уменьшает свое тепловыделение.

Система GTe безопасна и надежна. Так как саморегулирование предотвращает перегрев, G-Трейс может быть установлена даже в пластмассовые желоба, а стойкой к ультрафиолетовому излучению наружной оболочке нагревательный кабель защищен от вредных лучей солнца, что обеспечивает его долговечность и надежность. G-Трейс обеспечивает экономически эффективное решение проблем профилактики повреждения поверхности крыши и желобов, при этом система потребляет энергии не больше, чем на предотвращение образования льда. Проектирование и установка системы проста, так как не связана ни с какими фиксированными длинами. Нагревательная лента может быть отрезана до нужной длины во время монтажа. G-Трейс отрезается от катушки и помещается в желоб. В сливную трубу лента свешивается без использования распорок.

Все системы — от простых до самых сложных — используют в точности одни и те же компоненты, тем самым обеспечивая максимальную гибкость и простоту конструкции.

Технические характеристики

Максимальная температура (рабочая под нагрузкой)	C
Минимальная температура монтажа30°	C
Электропитание~220-240	В
(~110−120 В по заказу	/)
Максимальное сопротивление защитной оплетки	М
Тепловыделение	
Во льду при 0°C	М
В воздухе при 0°С	M

Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом В автоматических выключателей по стандарту BS EN 60 898:1991 или типом 2 по стандарту BS 3871

Марка кабеля	Температура включения,	Стартовый ток,			230 B		
Каосли	°C	А/м	6 A	10 A	16 A	20 A	25 A
GTe	10	0,360	30	48	78	90	_
	0	0,291	24	42	66	82	90
	-20	0,237	20	32	52	64	80

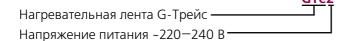
Температурные характеристики

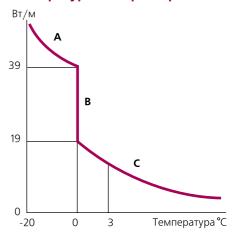
Напря- жение, В	GTe
200	0,91
208	0,93
220	0,93
230	1,00
240	1,03
250	1,06
277	1,15

Коэффициент изменения

тепловыделения

Сертификация





© Сертификат Соответствия Nº POCC GB.ME67.A00262

Информация для заказа

Пример

A - в снегу или талой воде нагревательная лента будет работать с полной теплоотдачей.

В — когда снег начинает таять и вода утекает, нагревательная лента саморегулируется до половинной мощности по мере высыхания.

С — при потеплении нагревательная лента еще уменьшает свое тепловыделение.

Принадлежности

Фирма поставляет полный набор принадлежностей, включая наборы для концевой заделки/соединения, оконечные уплотнения, монтажные коробки и утройства управления. Эти изделия рекомендуется использовать для нормальной работы нагревательных лент GTe.

FSR

Саморегулирующаяся электрическая нагревательная лента для защиты от замерзания или поддержания заданной температуры трубопроводов и резервуаров

ФРИЗСТОП НОРМАЛЬ

- Автоматически регулирует тепловыделение в ответ на повышение или понижение температуры трубы
- Может быть отрезана нужной длины без ущерба для характеристик
- Не перегреется и не перегорит даже при самопересечении
- Проверена на соответствие стандартам CENELEC/IEEE и российским стандартам для использования в обычной, опасной и коррозионной окружающих средах
- Выпускается на рабочее напряжение
 220—240 В и ~110—120 В по заказу
- ~ 220—240 в и ~110—120 в по заказу

Особенности

FSR (Фризстоп Нормаль) — это промышленного качества саморегулирующаяся нагревательная лента, соответствующая стандарту BS6351, уровень 22, которая может использоваться для защиты от замораживания или поддержания заданных температур до 65°С.

Она может быть отрезана нужной длины по месту, точно в соответствии с длиной трубопровода, без каких-либо конструктивных сложностей.

Фризстоп Нормаль одобрена для использования в обычных, опасных и коррозионных окружающих средах в соответствии со стандартами CENELEC и IEEE.

Характеристики саморегулирования повышают безопасность и надежность ленты. Фризстоп Нормаль не будет перегреваться или перегорать, даже когда ее отдельные участки накладываются друг на друга.

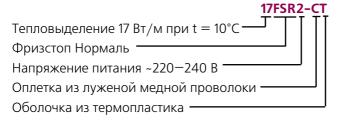
Технические характеристики

Максимальная температура
Максимально допустимая
температура без нагрузки (1000 часов суммарно)
Минимальная температура монтажа30°C
(-20°С по нормам CENELEC)
Электропитание~220-240 В
(~110−120 В по заказу)
Температурная классификацияТ6 (85°C)
Максимальное сопротивление
защитной оплетки18,2 Ом/км
Габариты
FSR
FSRC
FSRCT
FSRСF
Минимальный радиус изгиба
FSR
FSRC
FSRCT
1 JNC1

Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом C автоматических выключателей по стандарту BS EN 60 898:1991.

- Марка кабеля	Температура включения,	Стартовый ток,	230 B				
Каосли	°C	А/м*	6 A	10 A	16 A	20 A	25 A
10FSR 10		0,066	90	152	198	_	_
	0	0,082	74	122	196	198	_
	-20	0,118	50	84	136	170	198
	-40	0,136	44	74	118	148	184
17FSR	10	0,099	60	102	154	_	_
	0	0,123	48	82	130	154	_
	-20	0,152	40	66	106	132	154
	-40	0,201	30	50	80	100	124
25FSR	10	0,132	46	76	122	124	_
	0	0,161	36	62	98	122	124
	-20	0,209	20	34	56	70	88
	-40	0,253	20	32	50	64	80
31FSR	10	0,158	28	46	74	92	110
	0	0,194	20	34	54	66	84
	-20	0,240	16	26	40	50	64
	-40	0,279	14	24	38	48	60

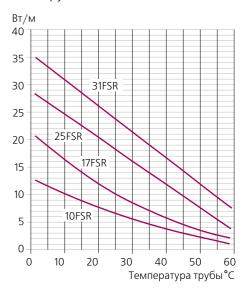

Сертификация

ϵ

- © CENELEC Сертификат № SCS Ex 94D3079 Код Eex е II Т6 Стандарт EN50014:1992 & EN50019;1994 Зона 1 и Зона 2
- Российский Сертификат Соответсвия на ленты FSR № РОСС GB.АЮ64.А00483, на нагревательные секции на их основе № РОСС RU.АЮ64.В00356
- © Сертификат Пожарной Безопасности ГПС МВД России № ССПБ GB.ОП019.А00005
- © Сертификат соответствия на нагревательные ленты FSR2-C, FSR2-CT и FSR2-CF № POCC RU.ГБ05.В00321 с маркировкой взрывозащиты 2ExelIT6 X
- Нагревательные секции марки СМБЭ на основе лент FSLe-С сертифицированы для использования на взрывоопасных объектах. Сертификат Соответствия № РОСС RU.ГБ05.В00068
- © Гигиеническое заключение на нагревательные секции марки СМБЭ № 77.ФЦ.12.355.П.1398.12.99

Информация для заказа

Пример



Коэффициент изменения тепловыделения

Напря- жение, В	10FSR2	17FSR2	25FSR2	31FSR2
200	0,83	0,86	0,89	0,92
208	0,88	0,90	0,92	0,94
220	0,94	0,95	0,96	0,97
230	1,00	1,00	1,00	1,00
240	1,06	1,05	1,04	1,03
250	1,11	1,09	1,07	1,06
277	1,26	1,21	1,17	1,13

Температурные характеристики

Номинальное тепловыделение при 115 или 230 В с FSR, установленной на теплоизолированной металлической трубе.

Принадлежности

Фирма поставляет полный набор принадлежностей, включая наборы для концевой заделки/соединения, оконечные уплотнения, монтажные коробки и утройства управления. Эти изделия рекомендуется использовать для нормальной работы нагревательных лент FSR.

^{*)} Нормированная продолжительность 300 с.

HW-R

Саморегулирующаяся электрическая нагревательная лента для поддержания температуры в системах обеспечения горячей водой жилых домов и коммерческих зланий

ХОТВАТ НОРМАЛЬ

- Поддерживает желаемую температуру горячей воды
- Отпадает надобность в обратных трубопроводах и насосах для рециркуляции
- Высокоэкономична
- Выпускается на рабочие напряжения 110—120 и 220—240 В переменного тока
- Не перегреется и не перегорит даже при самопересечении
- Выдерживает длительное воздействие кипящей воды

Особенности

Когда кранами горячей воды пользуются не часто, вода, находящаяся в распределительных трубах, охлаждается, и, как правило, течет понапрасну, пока горячая вода из накопительного бака достигнет крана.

Использование системы рециркуляции обеспечивает обычно только поддержание температуры воды в основных трубах и удваивает количество труб, в которых тепло и, следовательно, энергия, теряются.

HW-R (Хотват) — это саморегулирующаяся нагревательная лента, разработанная для компенсации тепловых потерь в системах распределения горячей воды.

Лента включает в себя полупроводящий саморегулирующийся нагревательный элемент, автоматически снижающий свое тепловыделение при повышении температуры трубы. Таким образом, нагреватель не может перегреться или перегореть.

Когда лента Хотват размещена на трубопроводе (под теплоизоляцией), тепловые потери устраняются и поддерживается требуемая температура воды. Дальнейшая экономия достигается за счет устранения необходимости в трубах рециркуляции вместе с их насосами, вентилями и т.д. Расположение ленты HW-R на трубопроводе горячей воды дает возможность пользоваться горячей водой из любого крана и резко повышает эффективность по сравнению с нетеплоизолированными трубопроводными системами с рециркуляцией.

Варианты исполнения

HW-R...T

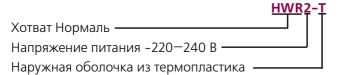
Нагревательная лента с наружной оболочкой из термопластика для поддержания трубопровода при температуре приблизительно 55°C.

Технические характеристики

Максимальная температура
Минимальная температура
монтажа
Электропитание~220-240 В
или ~110—120 B
Максимальное сопротивление
защитной оплетки

Габариты	13,6×6,0 мм
Минимальный радиус изгиба	

Характеристики системы


Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом C автоматических выключателей по стандарту BS EN 60 898:1991.

Марка кабеля	Температура включения, °С	Стартовый ток, А/м*	6 A	230 10 A) B 16 A	20 A
HW-R	18	0,089	64	106	135	_
	0	0,099	46	78	126	135

Информация для заказа

Пример

Рекомендуемая толщина теплоизоляции с коэффициентом теплопроводности 0,038 Bт/м x K при t = 36°C (мм)

Поддер. темпер.,		Диа	метр	трубь	I, MM	
°C	15	22	28	35	42	54
55	20	20	25	30	37	50
50	12	12	19	25	25	37

Принадлежности

Фирма поставляет полный набор принадлежностей, включая наборы для концевой заделки/соединения, оконечные уплотнения, монтажные коробки и утройства управления. Эти изделия рекомендуется использовать для нормальной работы нагревательных лент HW-R.

^{*)} Нормированная продолжительность 300 с.

HW-P

Саморегулирующаяся электрическая нагревательная лента для поддержания температуры в системах обеспечения горячей водой в гостиницах, больницах и санаториях

хотват плюс

- Поддерживает желаемую температуру горячей воды
- Отпадает надобность в обратных трубопроводах и насосах для рециркуляции
- Периодическая термическая дезинфекция трубопровода, помогающая предотвратить заражение
- Выпускается на рабочие напряжения 110—120 и 220—240 В переменного тока
- Не перегреется и не перегорит даже при самопересечении
- Управление несколькими нагревателями от одного регулятора

Особенности

Когда кранами горячей воды пользуются не часто, вода, находящаяся в распределительных трубах, охлаждается, и, как правило, течет понапрасну, пока горячая вода из накопительного бака достигнет крана.

Использование системы рециркуляции обеспечивает обычно только поддержание температуры воды в основных трубах и удваивает количество труб, в которых тепло и, следовательно, энергия, теряются.

HW-P (Хотват) — это саморегулирующаяся нагревательная лента, разработанная для компенсации тепловых потерь в системах распределения горячей воды.

Лента включает в себя полупроводящий саморегулирующийся нагревательный элемент, автоматически снижающий свое тепловыделение при повышении температуры трубы. Таким образом, нагреватель не может перегреться или перегореть.

Когда лента Хотват размещена на трубопроводе (под теплоизоляцией), тепловые потери устраняются и поддерживается требуемая температура воды. Дальнейшая экономия достигается за счет устранения необходимости в трубах рециркуляции вместе с их насосами, вентилями и т.д. HW-P используется для поддержания температуры 45 — 70°С в нормальном режиме работы с возможностью периодического повышения для дезинфекции для уменьшения риска заражения.

Расположение ленты HW-P на трубопроводе горячей воды дает возможность пользоваться горячей водой из любого крана и резко повышает эффективность по сравнению с нетеплоизолированными трубопроводными системами с рециркуляцией.

Варианты исполнения

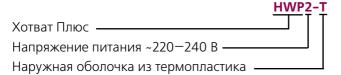
HW-P...T

Нагревательная лента с наружной оболочкой из термопластика для поддержания трубопровода при температуре между 45 и 70°С с дополнительной возможностью периодической дезинфекции.

Технические характеристики

Максимальная температура100°C
Минимальная температура
монтажа
Электропитание~220-240 В
или ~110—120 B
Максимальное сопротивление
защитной оплетки
Габариты
Минимальный радиус изгиба25 мм

Характеристики системы


Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом C автоматических выключателей по стандарту BS EN 60 898:1991.

Марка кабеля	Температура включения,	Стартовый ток,	230 B			
	℃ ℃	А/м*	6 A	10 A	16 A	20 A
HW-P	18	0,142	42	70	110	_
	0	0,177	34	56	90	110

Информация для заказа

Пример

Рекомендуемая толщина теплоизоляции с коэффициентом теплопроводности 0,038 Bт/м x К при t = 36°C (мм)

Поддер. темпер.,		Диа	метр :	трубь	I, MM	
°C	15	22	28	35	42	54
45 — 75 перемен.	20	20	25	30	37	50

Принадлежности

Фирма поставляет полный набор принадлежностей, включая наборы для концевой заделки/соединения, оконечные уплотнения, монтажные коробки и утройства управления. Эти изделия рекомендуется использовать для нормальной работы нагревательных лент HW-P.

^{*)} Нормированная продолжительность 300 с.

SM

Саморегулирующаяся электрическая нагревательная лента для снегоудаления и предотвращения обледенения дорог, пандусов и тротуаров

СНОУМЕЛТ

- Системы, подбираемые под размеры объекта
- Автоматически подстраивают тепловыделение в ответ на повышение или понижение температуры поверхности
- Не перегреется и не перегорит даже при самопересечении
- Средства управления обеспечивают высокую мощность для снегоудаления, уменьшают расход энергии на предотвращение образования льда
- Простая установка в бетон
- Могут быть отрезаны до необходимой длины без потерь на отходы

Особенности

SM (СноуМелт) — это саморегулирующаяся нагревательная лента, которая может использоваться для снегоудаления и предотвращения образования льда на таких поверхностях как бетонные дороги, пандусы и переходы. Она может также использоваться для обогрева лестниц, тротуаров, ограждений или погрузочных платформ.

Она может быть отрезана до нужной длины на месте, требуемую длину можно получить без сложных конструкторских расчетов

Выходная мощность саморегулируется в ответ на изменение температуры поверхности. СноуМелт не может перегреться и стремится уменьшить выделяемую мощность, когда в ней нет необходимости.

СноуМелт типа SM-A предназначен для малых объектов, он идеально подходит для террас, дорожек и подъездных путей в частных владениях.

СноуМелт типа SM-В идеально подходит для крупномасштабных применений и в сочетании со специальной высокоэффективной системой управления обеспечивает наибольшую эффективность системы в целом. Система управления включает полную мощность для снегоудаления и уменьшенную минимальную мощность для предотвращения образования льда.

Управляемая система СноуМелт может уменьшить эксплуатационные расходы на 80% по сравнению с обычно используемыми системами снегоудаления и предотвращения обледенения.

Варианты конструкции

SM-A

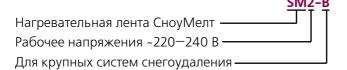
Для небольших систем снегоудаления, разработан для применения в быту, в частных домах.

SM-R

Для крупных систем снегоудаления, идеально подходит для пандусов автостоянок, взлетно-посадочных полос и т.д.

Технические характеристики

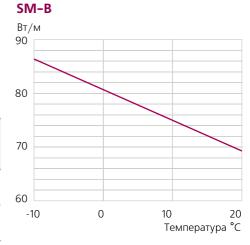
Максимальная температура .65 °C SM-B .100 °C
Максимально допустимая температура без подачи мощности (1000 ч суммарно) SM-A
Минимальная температура монтажа
Рабочее напряжение ~ 220 - 240 B (по заказу ~ 110—120 B)
Максимальное сопротивление защитной оплетки
Габариты 7,9×5,6 мм SM-B 16,0×6,9 мм
Минимальный радиус изгиба SM-A


Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом C автоматических выключателей по стандарту BS EN 60 898:1991.

Марка кабеля	Температура включения,	Стартовый ток,	230 B			
Каосли	°C	A/m*	6 A	10 A	16 A	20 A
SM-A	10	0,138	44	72	80	
	0	0,171	36	58	80	_
SM-B	10	0,405	14	24	40	50
	0	0,455	14	22	36	44

Информация для заказа


Пример

Температурные характеристики

Номинальное тепловыделение при 230 В и при установке кабелей в бетон.

Принадлежности

Фирма поставляет полный набор принадлежностей, включая наборы для концевой заделки/соединения, оконечные уплотнения, монтажные коробки и утройства управления. Эти изделия рекомендуется использовать для нормальной работы нагревательных лент SM.

^{*)} Нормированная продолжительность 300 с.

НУ, НУД, БУ

Установочные провода для подвода питания к нагревательным системам любого типа с температурным диапазоном от -40 до +70°C

Установочные провода

Назначение

Установочные провода марок НУ, НУД и БУ предназначены для подвода питания к нагревательным системам любого типа и могут работать в температурном диапазоне от -40 до +70°C.

Провода разработаны и изготавливаются для применения в качестве подводящих питание проводов к нагревательным секциям различного назначения. Каждая из марок предназначена для применения в определенных типах секций.

Провода расчитаны на работу при напряжении 220 В переменного тока при температуре окружающей среды от -40 до $+60^{\circ}$ C.

НУ

Установочный провод НУ разработан специально для подведения питания к нагревательным секциям «ТЕПЛОЛЮКС». Конструктивные и электрические параметры проода удовлетворяют требованиям безопасности ПУЭ и МЭК. Провода обеспечивают электробезопасность при подведении питания к нагревательным секциям для теплых полов.

Установочный провод НУ выпускается выпускается нескольких маркоразмеров и применяется в зависимости от подводящей мощности в секциях типа ТЛОЭ и ТЛБЭ и с другими нагревательными кабелями, имеющими оболочки из поливинилхлоридного пластиката.

НУД

Установочный провод НУД разработан для применения в секциях, где нагревательные кабели имеют полиэтиленовые светостабилизированные оболочки. Это секции типа ССБЭ, ТМОЭ и другие. Провод имеет оболочку из светостабилизированного полиэтилена и может применяться в секциях, укладываемых на открытом воздухе.

БУ

Установочный провод БУ имеет изоляцию из сополимера пропилена и предназначен для подведения питания к секциям с бронированным кабелем (см. НБ и БНБ). Провод имеет изоляцию из сополимера полипропилена, так же как и бронированные кабели и расчитан на работу при температурах до 130°С

Технические характеристики

Максимальная рабочая температура70°C
Минимальная рабочая температура40°C
Максимальное напряжение
Минимальная температура монтажа10°C
Минимально допустимый
радиус однократного изгиба
при монтаже кабеля
диаметров кабеля

Наимен. марки провода	Кол-во жил	Сечение жилы, мм ²	Макс. доп. токовая нагрузка, А
НУ 2х1	1	1	8
НУ 3х1	2	1	8
НУД 3х1,5	3	1,5	12
НУД 6+1,5	2	6 и 1,5	25
НУД 4х0,75	4	0,75	5
БУ 1х1,5	1	1,5	12

СРЕДНЕТЕМПЕРАТУРНЫЕ КАБЕЛИ

CHO

Электрический нагревательный провод постоянной мощности для обогрева узлов технологического оборудования, трубопроводов, емкостей в кондитерской и химической промышленности

Нагревательный провод постоянной мощности

- Выдерживает температуры до 200°C
- Максимальное тепловыделение 40 Вт/м
- Рабочее напряжение до 380 В
- По заказу могут быть изготовлены готовые нагревательные секции
- Высокая гибкость
- Стойкость к агрессивным средам

Особенности

Нагревательные провода СНО предназначены для обогрева различных объектов до температуры +200°С.

Провода могут работать в диапазоне температур окружающей среды от -40 до 60°С и напряжении до 380 В постоянного или переменного тока. В качестве нагревательного элемента использована проволока высокого сопротивления, а для изолированния фторопластовые и полиимидные пленки.

Провода успешно применяются для обогрева узлов технологического оборудования (прессы, литьевые машины, сушильные камеры), трубопроводов, трубопроводной арматуры и емкостей в кондитерской и химической промышленности. Провода незаменимы при работе в агрессивных средах (растворы кислот и щелочей).

Выпускается ряд маркоразмеров проводов СНО. Для каждого маркоразмера определене рабочая мощность и длина, которую можно подключать на 220 В без угрозы перегрева провода.

Срок службы провода — 16 лет.

При необходимости заземления системы обогрева применяется провод СНО с дополненым экраном и оболочкой сверху экрана — СНОЭ. СНОЭ рекомендуется применять для обогрева объектов, требующих обязательного заземления обогревающей системы. Маркоразмеры провода СНОЭ повторяют маркоразмеры провода СНО.

Технические характеристики

Максимальная	
рабочая температура	200°C
Минимальная рабочая темпе	ература40°С
Электропитание	220—380 В
Минимальная температура	
монтажа	10°C
Минимально допустимый ра	
однократного изгиба при мо	нтаже кабеля:
при температуре	
выше 5°С	5 ном. наружных
	диаметров кабеля
при температуре	
ниже 5°С	10 ном. наружных
	диаметров кабеля
Сопротивление изоляции	
не менее	$\dots \dots 1 \times 10^5 \text{MOm} \times \text{M}$

Конструкция

Нагревательная жила из сплава высокого сопротивления. Изоляция и оболочка из фторопластовой пленки.

Технические характеристики провода СНО при t на нагревательной жиле — 170°C

Марка провода	Длина нагреват. секции на 220 В, м	Ном. наружный диаметр провода, мм	Сопротивл. секции, хол./гор. Ом	Мощность секции, хол./гор. Вт
CHO 1x0,3	10	2,14	198/201	244/241
CHO 1x0,5	16	2,34	114/116	424/418
CHO 1x0,63	22	2,47	77/79	623/614
CHO 1x0,8	24	2,64	66/68	724/713
CHO 1x1,0	29	2,84	51/53	936/922
CHO 1x1,2	34	3,04	42/43	1150/1133
CHO 1x1,5	41	3,34	32/33	1490/1468
CHO 10x0,25	50	2,79	21/32	2283/1575

Термические характеристики кабеля действительны при теплоотдаче в воздух (Т_{возд}=20°С) и при расстоянии между нитками кабеля не менее 100 мм.

Сертификация

- Российский сертификат соответствия на провода СНО № РОСС GB.АЮ64.В00358
- © Сертификат пожарной безопасности № ССПБ.RU.АЮ 64x.B00030
- Сертификат соответствия на нагревательные провода CHO № POCC RU.ГБ05.В00324 с маркировкой взрывозащиты 2ExelIT6 X
- © Гигиеническое заключение на нагревательные секции на основе кабелей СНО № 77.01.09.355.П.01066.01

Информация для заказа

Пример

HTS1F

Электрическая одножильная нагревательная лента последовательного сопротивления для подогрева длинных трубопроводов

ЛОНГЛАЙН

- Длина обогреваемого участка до 5 км
- Электропитание из одной точки минимизирует затраты на питающую проводку
- Высокая гибкость при плоском поперечном сечении
- Тепловыделение до 60 Вт/м

Особенности

HTS1F (Лонглайн) — одножильный нагревательный кабель последовательного сопротивления, поставляемый комплектами из трех кабелей для формирования 3-х фазной нагревательной системы. Он используется для защиты от замерзания или поддержания температуры процесса в длинных трубопроводах.

Типичное применение — поддержание температуры сырой нефти или мазута в надземных или подземных трубопроволах

Лонглайн минимизирует число необходимых пунктов электропитания, и, соответственно, затраты на оборудование кабельных систем распределения. Электрические цепи запитываются только у концов трубы.

Число нагревательных кабелей и размеры их проводников выбраны так, чтобы обеспечить желаемое тепловыделение для требуемой длины цепи. Кабели подсоединяются непосредственно к 3-х фазным сетевым магистралям, или, когда требуется, к повышающему трансформатору.

По конструкции кабель представляет собой одиночный проводник из медной ленты, заключенный в оболочку из кремнийорганической резины для гибкости.

Медная оплетка и наружная оболочка могут быть предусмотрены для дополнительной механической защиты или целей заземления.

Большая поверхность нагрева плоской ленты конструкции Лонглайн приводит к более низким рабочим температурам, чем у эквивалентных круглых конструкций, повышая таким образом безопасность и время жизни системы. Высокая эффективность дает высокую тепловыделяющуюся способность (до 60 Вт/м) в ленте.

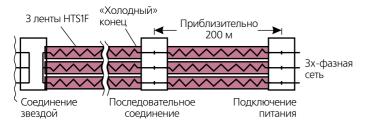
Кабель Лонглайн может прямо укладываться на трубы над землей. Для трубопроводов, проложенных в земле, кабели обычно помещаются в направляющие каналы на предварительно изолированном трубопроводе.

Поставляется кабель в удобных длинах, например 200 м, для последовательного соединения на месте.

Технические характеристики

Максимальная температура
205°C**
Минимальная
температура монтажа40°С*
-20°C**
Электропитание
Тепловыделение до 60 Вт/м
Толщина нагревательного проводника
при ширине 16 мм
при ширине 20 мм

^{**)} Оболочка из фторполимера (FEP).

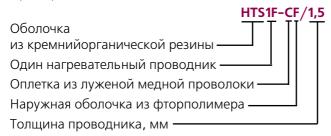


^{*)} Изоляция и оболочка из кремнийорганической резины

Габариты

16 мм — ширина проводника HTS1F .20,0×6,0 мм HTS1F-C .21,0×7,0 мм HTS1F-CS .23,0×9,0 мм HTS1F-CF .22,0×8,0 мм	M
20 мм — ширина проводника HTS1F .24,0×6,0 мм HTS1F-C .25,0×7,0 мм HTS1F-CS .28,0×9,0 мм HTS1F-CF .27,0×8,0 мм	M M
Минимальный радиус изгиба HTS1F .35 мм HTS1F-C .35 мм HTS1F-CS .50 мм HTS1F-CF .75 мм	M

Типичная схема использования



Сертификация

- Российский сертификат соответствия на ленты HTS1F № РОСС GB.АЮ64.А00483, на нагревательные секции на их основе № РОСС RU.АЮ64.В00356
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- Сертификат соответствия на нагревательные ленты HTS1F-C, HTS1F-CS и HTS1F-CF № РОСС RU.ГБ05.В00323 с маркировкой взрывозащиты 2ExeIIT6 X
- Сертификат соответствия на нагревательные секции на основе кабелей HTS1F-CS для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068
- Гигиеническое заключение на нагревательные секции на основе кабелей HTS1F
 № 77.ФЦ.12.355.П.1398.12.99

Информация для заказа

Пример

Максимальные температуры трубы (изделия)

Температура поверхности нагревателя не должна превышать максимальной температуры, которую выдерживают его конструкционные материалы. Это обеспечивается путем ограничения температуры трубы или обогреваемого изделия до безопасного уровня, расчетом конструкции или посредством температурного контроля.

Номин. тепло- выде-			ьно допус гура трубы	
ление, Вт/м	HTS1F	HTS1F-C	HTS1F-CS	HTS1F-CF
10	217	218	208	192
20	189	191	180	178
30	156	164	158	165
40	128	134	127	127
50	98	97	93	93
60	50	46	57	57

Температуры трубы большие, чем приведенные выше, могут быть обеспечены с использованием устройств компенсации напряжения (например POWERMATCH).

HTS3F

Электрическая одножильная нагревательная лента последовательного сопротивления для подогрева трубопроводов средней длины

ЛОНГЛАЙН

- Длина обогреваемого участка до 2 км
- Электропитание из одной точки минимизирует затраты на питающую проводку
- Высокая гибкость при плоском поперечном сечении
- Тепловыделение до 60 Вт/м
- Cooтветствует стандартам CENELEC/FM для применения в опасных местах

Особенности

HTS3F (Лонглайн) — трехфазный нагревательный кабель последовательного сопротивления для защиты от замерзания или поддержания температуры процесса в трубопроводах средней длины, например до 2 км в обычных или опасных местах.

Типичное применение — поддержание температуры сырой нефти или мазута в надземных или подземных трубопроводах.

Лонглайн минимизирует число необходимых пунктов электропитания, и, соответственно, затраты на оборудование кабельных систем распределения. Электрические цепи запитываются только у концов трубы.

По конструкции кабель представляет собой проводник из трех медных лент, заключенных в оболочку из кремнийорганической резины для гибкости.

Медная оплетка и наружная оболочка могут быть предусмотрены для дополнительной механической защиты или целей заземления.

Большая поверхность нагрева плоской ленты конструкции Лонглайн приводит к более низким рабочим температурам, чем у эквивалентных круглых конструкций, повышая таким образом безопасность и время жизни системы. Высокая эффективность дает высокую тепловыделяющуюся способность (до 60 Вт/м) в ленте.

Кабель Лонглайн может прямо или спирально укладываться на трубы над землей. Для трубопроводов, проложенных в земле, кабели обычно помещаются в направляющие каналы на предварительно изолированном трубо-

Поставляется кабель в удобных длинах, например 200 м, для последовательного соединения на месте.

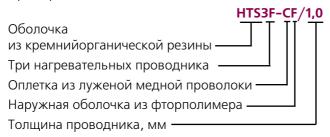
Технические характеристики

Максимальная температура
205°C**
Минимальная
температура монтажа80°С*
-20°C**
Электропитание
Тепловыделение до 60 Вт/м

Сертификация

BASEEFA Сертификат № 3170U. Стандарты EN50014:1992 и EN50019:1994, зоны 1 и 2

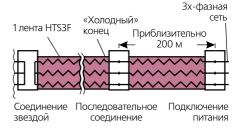
^{*)} Изоляция и оболочка из кремнийорганической резины
**) Оболочка из фторполимера (FEP).


- Российский сертификат соответствия на ленты HTS3F № РОСС GB.АЮ64.А00483, на нагревательные секции на их основе — № РОСС RU.АЮ64.В00356
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- Сертификат соответствия на нагревательные ленты HTS3F-C, HTS3F-CS и HTS3F-CF № РОСС RU.ГБ05.В00323 с маркировкой взрывозащиты 2ExeIIT6 X
- Сертификат соответствия на нагревательные секции на основе кабелей HTS3F-CS для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068
- © Гигиеническое заключение на нагревательные секции на основе кабелей HTS3F № 77.ФЦ.12.355.П.1398.12.99

Максимальная температура трубы/изделия °С

Марка кабеля	Ном. тепло-		Класси	1фикац	ция мес	горасп	олож	ения
	выде-		Гр	уппа о	пасной	Т		Без-
	ление Вт/м	Т6	T5	T4	T3	T2	T1	опасное
HTS3F	10 20 30 40 50		H	le атте	стовано			192 178 165 127 93 57
HTS3F-C	10 20 30 40 50 60	48 - - - -	66 32 - - - -	107 75 41 – –	181 158 133 109 76 30	218 191 164 134 97 46	218 191 164 134 97 46	218 191 164 134 97 46
HTS3F-CS		58 37 - - -	74 54 31 – –	112 94 74 51 27	181 166 153 127 93	208 180 158 127 93	208 180 158 127 93	208 180 158 127 93 57
HTS3F-CF		58 37 - - - -	74 54 31 – –	112 94 74 51 27	181 166 153 127 93	192 178 165 127 93	192 178 165 127 93	192 178 165 127 93 57

Информация для заказа


Пример

Габариты

HTS3F 20,6×6,0 мг	М
HTS3F-C 21,0×7,0 мг	М
HTS3F-CS	М
HTS3F-CF22,4×8,0 мг	М
Минимальный радиус изгиба	
HTS1F	М
HTS1F-C	М
HTS1F-CS 50 мг	М
HTS1F-CF	М

Типичная схема использования

FSS

Саморегулирующаяся электрическая нагревательная лента для технологического подогрева или поддержания заданной температуры трубопроводов и резервуаров, в том числе в опасных зонах

ФРИЗСТОП СУПЕР

Коэффициент изменения тепловыделения

Напря- жение, В	15FSS2	30FSS2	40FSS2	55FSS2
200	0,84	0,85	0,85	0,85
208	0,88	0,89	0,89	0,89
220	0,95	0,95	0,95	0,95
230	1,00	1,00	1,00	1,00
240	1,05	1,05	1,05	1,05

- Автоматически регулирует тепловыделение в ответ на повышение или понижение температуры трубы
- Может быть отрезана нужной длины без ущерба для характеристик
- Не перегревается и не перегорает даже при самопересечении
- Высокое тепловыделение до 55 Вт/м
- Выпускается на рабочие напряжения
- ~ 220-240 В и ~110-120 В переменного тока
- Проверена на соответствие стандартам CEN-ELEC/IEEE и российским стандартам для использования в обычной, опасной и коррозионной окружающих средах

Особенности

FSS (Фризстоп Супер) — это промышленного качества саморегулирующаяся нагревательная лента, соответствующая стандарту BS6351, уровень 22, которая может использоваться для технологического подогрева или поддержания заданных температур до 120°C.

Она может быть отрезана до нужной длины по месту, точно в соответствии с длиной трубопровода, без каких-либо конструктивных сложностей.

Фризстоп Супер одобрена для использования в обычной (безопасной) или опасной и коррозионных окружающих средах в соответсвии со стандартами CENELEC EN50014/50019.

Характеристики саморегулирования повышают безопасность и надежность ленты. FSS не будет перегреваться или перегорать, даже когда ее отдельные участки накладываются друг на друга.

Варианты исполнения

FSS

Базовая конструкция нагревателя без оплетки для использования в безопасных местах, защищенная против коррозионных химических растворов и паров. Ленты должны иметь дополнительную защиту от механических повреждений.

FSS...x

Конструкция с оплеткой из луженой (С) или никелированной (N) медной проволоки для использования в безопасных и опасных местах или в местах, где обогреваемое оборудование не обеспечивает эффективного заземления, например — трубопроводы из пластмассы. Ленты должны иметь дополнительную защиту от механических повреждений.

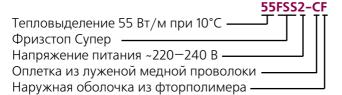
FSS...xF

Конструкция с оболочкой из фторполимера поверх оплетки из луженой или никелированной медной проволоки, обеспечивает защиту в местах, где могут присутствовать защиту в местах, где могут при-

сутствовать коррозионные химические растворы или пары.

Технические характеристики

Максимальная
температура жилы120°С
Максимально допустимая
температура без нагрузки
(1000 час. суммарно)
Минимальная
температура монтажа30°С
(CENELEC -20°C)
Температурная группа в оплетке — T2 (300°C)
в оплетке и оболочке — ТЗ (200°C)
Электропитание~220-240 В
(~110—120 В по заказу)
Габариты
FSS8,6×3,1 мм
FSSх
FSSxF
Минимальный радиус изгиба
FSS20 мм
FSSх
FSSxF

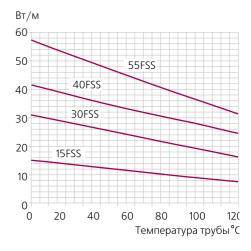

Сертификация

ϵ

- **CENELEC** Сертификат SCS Ex 98E3175, «х» только для лент с оплеткой, код EEexellT. Стандарты EN50014:1992 и EN50019:1994, зоны 1 и 2
- Российский сертификат соответствия на ленты FSS № РОСС GB.АЮ64.А00483
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- © Сертификат соответствия на нагревательные ленты FSS2-С и FSS2-СF № РОСС RU.ГБ05.В00321 с маркировкой взрывозащиты 2ExelIT6 X
- Сертификат соответствия на нагревательные секции на основе лент FSS для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068
- Гигиеническое заключение на нагревательные секции на основе лент FSS
 № 77.ФЦ.12.355.П.1398.12.99

Информация для заказа

Пример


Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом С автоматических выключателей по стандарту BS EN 60 898:1991

Тип	Темп.	Старт.	230 B				
	вкл., ℃	ток, А/м*	6 A	10 A	16 A	20 A	
	C	A/M	UA	10 A	10 A	20 A	
15FSS	10	0,089	68	112	162	_	
	0	0,099	64	106	162	_	
	-20	0,106	56	94	150	162	
	-40	0,119	50	84	134	162	
30FSS	10	0,173	34	58	92	114	
	0	0,180	34	56	88	112	
	-20	0,197	30	50	82	102	
	-40	0,215	28	46	74	94	
40FSS	10	0,239	26	42	66	84	
	0	0,250	24	40	64	80	
	-20	0,275	22	36	58	72	
	-40	0,302	20	34	52	66	
55FSS	10	0,309	20	32	52	64	
	0	0,324	18	30	50	62	
	-20	0,357	16	28	44	56	
	-40	0,392	16	26	40	50	

Температурные характеристики

Номинальное тепловыделение при 115 или 230 В с FSS на теплоизолированной металлической трубе.

^{*)} Нормированная продолжительность 300 с.

FSP

Саморегулирующаяся электрическая нагревательная лента для технологического подогрева или поддержания заданной температуры трубопроводов и резервуаров, в том числе в опасных зонах

ФРИЗСТОП ПЛЮС

Коэффициент изменения тепловыделения

Напря- жение, В	17FSP2	25FSP2	31FSP2	50FSP2
200	0,80	0,84	0,89	0,94
208	0,85	0,88	0,92	0,96
220	0,93	0,95	0,96	0,98
230	1,00	1,00	1,00	1,00
240	1,07	1,05	1,04	1,01
250	1,13	1,11	1,07	1,02
277	1,32	1,25	1,17	1,03

- Автоматически регулирует тепловыделение в ответ на повышение или понижение температуры трубы
- Может быть отрезана нужной длины без ущерба для характеристик
- Не перегревается и не перегорает даже при самопересечении
- Выпускается на рабочие напряжения
- ~ 220—240 В и ~110—120 В переменного тока
- Проверена на соответствие стандартам CEN-ELEC/IEEE и российским стандартам для использования в обычной, опасной и коррозионной окружающих средах

Особенности

FSS (Фризстоп Плюс) — это промышленного качества саморегулирующаяся нагревательная лента, соответствующая стандарту BS6351, уровень 22, которая может использоваться для технологического подогрева или поддержания заданных температур до 110°С.

Она может быть отрезана до нужной длины по месту, точно в соответствии с длиной трубопровода, без каких-либо конструктивных сложностей.

Фризстоп Плюс одобрена для использования в обычной (безопасной) или опасной и коррозионных окружающих средах в соответсвии со стандартами CENELEC EN50014/50019.

Характеристики саморегулирования повышают безопасность и надежность ленты. FSP не будет перегреваться или перегорать, даже когда ее отдельные участки накладываются друг на друга.

Варианты исполнения

FSP

Базовая конструкция нагревателя без оплетки для использования в безопасных местах, защищенная против коррозионных химических растворов и паров.

FSP...C

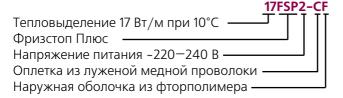
Конструкция с оплеткой из луженой медной проволоки для использования в безопасных и опасных местах или в местах, где обогреваемое оборудование не обеспечивает эффективного заземления, например — трубопроводы из пластмассы.

FSP...CF

Конструкция с оболочкой из фторполимера поверх оплетки из луженой или никелированной медной проволоки, обеспечивает защиту в местах, где могут присутствовать защиту в местах, где могут присутствовать коррозионные химические растворы или пары (нагреватели, соответствующие требованиям VDE).

Технические характеристики

Максимальная температура жилы110°C
Максимально допустимая
температура без нагрузки
(1000 час. суммарно)
Минимальная
температура монтажа30°С
(CENELEC -20°C)
Температурная
группа
50 Вт/м — Т3 (200°C)
Электропитание~220-240 В
(~110−120 В по заказу)
Максимальное сопротивление
защитной оплетки18,2 Ом/км
Габариты
FSP
FSPС
FSPCF
Минимальный радиус изгиба
FSP20 мм
FSPС
FSPCF

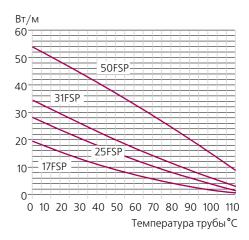

Сертификация

ϵ

- **CENELEC** Сертификат SCS Ex 94D3079, код EEexellT. Стандарты EN50014:1992 и EN50019:1994, зоны 1 и 2
- Российский сертификат соответствия на ленты FSP № РОСС GB.АЮ64.А00483, на нагревательные секции на их основе № РОСС RU.АЮ64.В00356
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- Сертификат соответствия на нагревательные ленты FSP2-С и FSP2-СF № РОСС RU.ГБ05.В00321 с маркировкой взрывозащиты 2ExelIT6 X
- Сертификат соответствия на нагревательные секции на основе лент FSP для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068
- Гигиеническое заключение на нагревательные секции на основе лент FSP
 № 77.ФЦ.12.355.П.1398.12.99

Информация для заказа

Пример


Максимальная длина ленты в зависимости от типа автоматического выключателя питания (м)

Для использования с типом С автоматических выключателей по стандарту BS EN 60 898:1991

Тип	Темп.	Старт.	230 B				
	вкл.,	A/M*	6 A	10 A	16 A	20 A	
17FSP	10	0,100	60	100	154	_	
	0	0,117	52	86	136	154	
	-20	0,151	40	66	106	132	
	-40	0,166	36	60	96	120	
25FSP	10	0,129	46	78	124	_	
	0	0,181	34	56	88	110	
	-20	0,222	28	46	72	90	
	-40	0,259	24	38	62	78	
31FSP	10	0,158	38	64	102	110	
	0	0,177	34	56	90	110	
	-20	0,255	24	40	62	78	
	-40	0,266	22	38	60	76	
50FSP	10	0,270	22	38	60	74	
	0	0,303	20	34	52	66	
	-20	0,413	14	24	38	48	
	-40	0,455	14	22	36	44	

Температурные характеристики

Номинальное тепловыделение при 115 или 230 В с FSP на теплоизолированной металлической трубе.

^{*)} Нормированная продолжительность 300 с.

EMTS

Электрическая нагревательная лента постоянной мощности для защиты от замораживания, использования в рефрижераторах или технологического подогрева рубопроводов и резервуаров

Проводники из

МИКРОТРЕЙСЕР

- Выдерживает температуры до 200°C
- Тепловыделение до 50 Вт/м
- Может быть отрезана нужной длины по месту
- Особенно подходит для трубопроводов малого диаметра
- Высокая гибкость
- Проверена на соответствие российским стандартам для использования в обычной, опасной и коррозионной окружающих средах
- Выпускается на напряжение ~110—120 и ~220—240 В

Особенности

EMTS (Микротрейсер) — это расчитанная на средние температуры нагревательная лента параллельного сопротивления постоянной мощности, которая может использоваться для защиты от замораживания или технологического подогрева.

EMTS особенно подходит для применения в рефрижераторах или для приборных трубок малого диаметра или технологических трубопроводов, расположенных в неопасных местах.

Микротрейсер выбирают, когда требуются короткие или средней длины электрические цепи (для длинных электрических цепей более подходит EMSS Минитрейсер).

Изоляция из кремнийорганической резины особенно подходит для применений, где требуется высокая гибкость. EMTS устанавливается быстро и просто, не требуется никаких специальных навыков или инструментов. Компоненты для заделки концов и подключения питания имеются в удобных наборах.

Варианты исполнения

EMTS...C

Медная луженая оплетка обеспечивает дополнительную механическую защиту базовой конструкции нагревателя и может использоваться, когда обогреваемое оборудование не обеспечивает эффективного заземления.

EMTS...CS

Оболочка из кремнийорганической резины поверх оплетки из луженой медной проволоки обеспечивает дополнительную защиту.

EMTS...CF

Фторполимерная оболочка поверх оплетки из луженой медной проволоки обеспечивает защиту в местах, где могут присутствовать агрессивные химические растворы или пары.

Технические характеристики

Минимальная температура	
монтажа	80°C
Электропитание	~220-240 B
	или ~110—120 B
Максимальное сопротивление	
защитной оплетки	
Габариты	
EMTS	8,2×6,0 мм
EMTSC	9,0×6,8 мм
EMTSCT	
EMTSCF	10,2×8,0 мм
Минимальный радиус изгиба	
EMTS	10 мм
EMTSC	
EMTSCT	
EMTSCF	

Конструкция

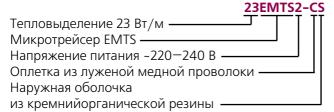
Нагревательный элемент — никель-хром.

Токопроводящие проводники — луженая медь сечением $1,5 \text{ мм}^2$.

Изоляция проводников — кремнийорганическая резина.

Оболочка — кремнийорганическая резина.

Оплетка — луженая медь.


Наружная оболочка — кремнийорганическая резина или фторополимер (по заказу).

Сертификация

- Российский сертификат соответствия на ленты EMTS № РОСС GB.АЮ64.А00483, на нагревательные секции на их основе № РОСС RU.АЮ64.В00356
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- © Сертификат соответствия на нагревательные ленты EMTS2-C, EMTS2-CS и EMTS2-CF № РОСС RU.ГБ05.В00322 с маркировкой взрывозащиты 2ExelIT6 X
- © Сертификат соответствия на нагревательные секции на основе лент EMTS для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068
- Гигиеническое заключение на нагревательные секции на основе лент EMTS
 № 77.ФЦ.12.355.П.1398.12.99

Информация для заказа

Пример

Максимальные температуры трубы (изделия)

Температура поверхности нагревателя не должна превышать максимальной температуры, которую выдерживают его конструкционные материалы. Это обеспечивается путем ограничения температуры трубы или обогреваемого изделия до безопасного уровня, расчетом конструкции или посредством температурного контроля.

Номин.			но допус [.] /ра трубь	
выде- ление, Вт/м	EMTS	EMTS-C	EMTS-CS	EMTS-CF
6,5	190	190	190	190
13	180	180	185	185
23	150	150	160	160
33	110	110	115	115
50	70	75	80	75

Температуры трубы большие, чем приведенные выше, могут быть обеспечены с использованием устройств компенсации напряжения (например POWERMATCH).

Максимальная длина цепи

Тепло-	Макс. длина цепи*, м		Номинальная длина зоны, мм		
ление, Вт/м	115 B	230 B	115 B	230 B	
6,5	82	164	1000	1500	
13	58	116	741	1100	
23	44	87	900	1000	
33	36	73	1000	950	
50	30	59	995	900	

Коэффициент изменения тепловыделения

Нагреват лента на			ательная на 230 В			
277 B 230 B 208 B 120 B 110 B	5,80 4,00 3,27 1,09 0,91	277 B 240 B 220 B 208 B 115 B	1,45 1,09 0,91 0,82 0,25			

^{*)} Допускается 10% отклонения тепловыделения от ленты к ленте.

EMTF

Электрическая нагревательная лента постоянной мощности для защиты от замораживания или технологического подогрева рубопроводов и резервуаров

МИКРОТРЕЙСЕР

- Выдерживает температуры до 200°C
- Тепловыделение до 70 Вт/м
- Может быть отрезана нужной длины по месту
- Особенно подходит для трубопроводов малого диаметра
- Высокая коррозионная стойкость
- Проверена на соответствие российским стандартам для использования в обычной, опасной и коррозионной окружающих средах
- Выпускается на напряжение ~110—120 и ~220—240 В

Особенности

EMTF (Микротрейсер) — это расчитанная на средние температуры нагревательная лента параллельного сопротивления постоянной мощности, которая может использоваться для защиты от замораживания или технологического подогрева.

EMTF особенно подходит для обогрева небольших устройств, трубок анализаторов или технологических трубопроводов, расположенных в неопасных местах.

Микротрейсер выбирают, когда требуются короткие или средней длины электрические цепи (для длинных электрических цепей более подходит EMSS Минитрейсер).

Изоляция из кремнийорганической резины особенно подходит для применений, где требуется высокая гибкость. EMTF устанавливается быстро и просто, не требуется никаких специальных навыков или инструментов. Компоненты для заделки концов и подключения питания имеются в удобных наборах.

Варианты исполнения

EMTF

Бззовая конструкция ленты с оболочкой из фторполимера.

EMTF...C

Медная луженая оплетка обеспечивает дополнительную механическую защиту базовой конструкции нагревателя и может использоваться, когда обогреваемое оборудование не обеспечивает эффективного заземления.

EMTF...CF

Фторполимерная оболочка поверх оплетки из луженой медной проволоки обеспечивает защиту в местах, где могут присутствовать агрессивные химические растворы или пары.

Технические характеристики

Максимальная температура	
без нагрузки	C
Минимальная температура	
монтажа80°	C

) B) B
/M
ИМ ИМ ИМ
ИМ ИМ
/ 11/1

Конструкция

Нагревательный элемент — никель-хром.

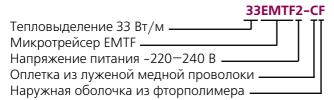
Токопроводящие проводники — луженая медь сечением $1,5 \text{ мм}^2$.

Изоляция проводников — кремнийорганическая резина.

Оболочка – фторполимер.

Оплетка — луженая медь (по заказу).

Наружная оболочка — фторполимер (по заказу).


Сертификация

- Российский сертификат соответствия на ленты EMTF № РОСС GB.AЮ64.A00483, на нагревательные секции на их основе — № РОСС RU.AЮ64.B00356
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- Сертификат соответствия на нагревательные ленты EMTF2-C и EMTF2-CF № РОСС RU.ГБ05.В00322 с маркировкой взрывозащиты 2ExeIIT6 X
- Сертификат соответствия на нагревательные секции на основе лент EMTF для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068
- Гигиеническое заключение на нагревательные секции на основе лент EMTF
 № 77.ФЦ.12.355.П.1398.12.99

По запросу возможна сертификация на соответствие другим национальным стандартам.

Информация для заказа

Пример

Максимальные температуры трубы (изделия)

Температура поверхности нагревателя не должна превышать максимальной температуры, которую выдерживают его конструкционные материалы. Это обеспечивается путем ограничения температуры трубы или обогреваемого изделия до безопасного уровня, расчетом конструкции или посредством температурного контроля.

Номин. тепло-	Максимально допустимая температура трубы, °С					
выде- ление, Вт/м	EMTF	EMTF-C	EMTF-CF			
6,5	190	190	190			
13	175	175	185			
23	135	145	155			
33	95	100	100			
50	45	60	70			

Температуры трубы большие, чем приведенные выше, могут быть обеспечены с использованием устройств компенсации напряжения (например POWERMATCH).

Максимальная длина цепи

Тепло-	Макс. длина цепи*, м		Номинальная длина зоны, мм		
ление, Вт/м	115 B	230 B	115 B	230 B	
6,5	82	164	1000	1500	
13	58	116	741	1100	
23	44	87	900	1000	
33	36	73	1000	950	
50	30	59	995	900	

Коэффициент изменения тепловыделения

_					
F	Нагреват лента на		Нагревательная лента на 230 В		
	277 B 230 B 208 B 120 B 110 B	5,80 4,00 3,27 1,09 0,91	277 B 240 B 220 B 208 B 115 B	1,45 1,09 0,91 0,82 0,25	

^{*)} Допускается 10% отклонения тепловыделения от ленты к ленте.

MTF

Электрическая нагревательная лента постоянной мощности для защиты от замораживания или технологического подогрева рубопроводов и резервуаров

МИНИТРЕЙСЕР

- Выдерживает температуры до 200°C
- Тепловыделение до 50 Вт/м
- Может быть отрезана нужной длины по месту
- Высокая коррозионная стойкость
- Соответствует стандартам IEEE для применения в обычных условиях и опасных зонах
- Выпускается на напряжение ~110—120 и ~220—240 В

Особенности

МТГ (Минитрейсер) — это расчитанная на средние температуры нагревательная лента параллельного сопротивления постоянной мощности, которая может использоваться для защиты от замораживания или технологического подогрева трубопроводов и резервуаров.

MTF испытывается в заводских условиях на соответствие стандартам IEEE для применения в неопасных и опасных местах.

Минитрейсер имеет токопроводящие шины большого сечения (2,5 мм²), что увеличивает длину нагревательных цепей.

МТF устанавливается быстро и просто и не требует никаких специальных навыков или инструментов. Компоненты для заделки концов и подключения питания имеются в удобных наборах.

Варианты исполнения

MTF

Бззовая конструкция ленты без оплетки для использования в безопасных местах.

MTF...C

Конструкция с медной луженой оплеткой для использования в неопасных местах, опасных местах, (Класс 1, Подраздел 2) или в местах, где обогреваемое оборудование не обеспечивает эффективного заземления.

MTF...CF

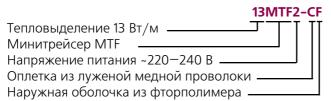
Фторполимерная оболочка поверх оплетки из луженой медной проволоки обеспечивает защиту в местах, где могут присутствовать агрессивные химические растворы или пары.

Технические характеристики

Максимальная температура
без нагрузки
Минимальная температура
монтажа40°С
Электропитание~220-240 В
или ~110—120 B
Максимальное сопротивление
защитной оплетки

Габариты	
MTF	9,2×6,2 мм
MTFC	10,0×7,0 мм
MTFCF	
Минимальный радиус изгиба	
EMTF	25 мм
EMTFC	
EMTFCF	

Максимальные температуры трубы (изделия) °С


Марка кабеля	Ном. тепло-		Классификация месторасположе					ения
	выде-		Группа опасной Т*					
	ление Вт/м	Т6	T5	T4	T3	T2	T1	опасное**
MTF	6,5							190
	13							180
	23		F	не аттес	тованс)		150
	33							110
	50							70
MTFC	6,5	60	75	120	190	190	190	190
	13	40	55	95	175	180	180	180
	23	_	30	65	155	155	155	155
	33	_	_	40	115	120	120	120
	50	_	_	_	70	80	80	80
MTFCF	6,5	60	80	125	190	190	190	190
	13	35	50	100	185	185	185	185
	23	_	25	55	160	165	165	165
	33	_	-	35	115	120	120	120
	50	-	_	_	80	85	85	85

Сертификация

- Российский сертификат соответствия на ленты МТF № РОСС GB.АЮ64.А00483, на нагревательные секции на их основе № РОСС RU.АЮ64.В00356
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- Сертификат соответствия на нагревательные ленты МТF2-С и МТF2-СF № РОСС RU.ГБ05.В00322 с маркировкой взрывозащиты 2ExelIT6 X
- © Сертификат соответствия на нагревательные секции на основе лент МТF для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068

Информация для заказа

Пример

Конструкция

Нагревательный элемент — никельхром.

Токопроводящие проводники — луженая медь сечением 2,5 мм².

Изоляция проводников — кремнийорганическая резина.

Оболочка – фторполимер.

Оплетка — луженая медь (по зака $_{3y}$).

Наружная оболочка — фторполимер (по заказу).

Максимальная длина цепи

Тепло-	Максимальная длина цепи***, м		
ление, Вт/м	115 B	230 B	
6,5	106	212	
13	75	150	
23	56	113	
33	47	94	
50	38	76	

Коэффициент изменения тепловыделения

Нагревательная		Нагревательная	
лента на 115 В		лента на 230 В	
277 B	5,80	277 B	1,45
230 B	4,00	240 B	1,09
208 B	3,27	220 B	0,91
120 B	1,09	208 B	0,82
110 B	0,91	115 B	0,25

^{*)} Пределы температур согласно EN50014

^{**)} Температуры ограничены материалами и конструкцией (допустимые температуры)

^{***)} Допускается 10% отклонения тепловыделения от ленты к ленте.

MTSS

Электрическая нагревательная лента постоянной мощности для защиты от замораживания или технологического подогрева рубопроводов и резервуаров

Проводники из

МИНИТРЕЙСЕР

- Выдерживает температуры до 200°C
- Тепловыделение до 66 Вт/м
- Может быть отрезана нужной длины по месту
- Высокая гибкость
- Проверена на соответствие российским стандартам для использования в обычной, опасной и коррозионной окружающих средах
- Выпускается на напряжение ~110—120 и ~220—240 В
- Токопроводящие жилы большого диаметра обеспечивают питание длинных нагревательных цепей

Особенности

MTSS (Минитрейсер) — это расчитанная на средние температуры нагревательная лента параллельного сопротивления постоянной мощности, которая может использоваться для защиты от замораживания или технологического подогрева трубопроводов и резервуаров.

Минитрейсер имеет токопроводящие шины большого сечения (2,5 мм²), что увеличивает длину нагревательных цепей.

Изоляция из кремнийорганической резины особенно подходит для применений, где требуется высокая гибкость. MTSS устанавливается быстро и просто и не требует никаких специальных навыков или инструментов. Компоненты для заделки концов и подключения питания имеются в удобных наборах.

Варианты исполнения

MTSS

Бззовая конструкция ленты с изоляцией из кремнийорганической резины.

MTSS...C

Конструкция с медной луженой оплеткой для использования в местах, где обогреваемое оборудование не обеспечивает эффективного заземления.

MTSS...CS

Оболочка из кремнийорганической резины поверх оплетки из луженой медной проволоки обеспечивает дополнительную защиту.

MTSS...CF

Фторполимерная оболочка поверх оплетки из луженой медной проволоки обеспечивает защиту в местах, где могут присутствовать агрессивные химические растворы или пары.

Технические характеристики

Минимальная температура монтажа80°C (-20°C с наружной оболочкой из фторполимера)
Электропитание~220—240 В или ~110—120 В
Габариты .10,0×7,0 мм MTSSС .11,0×8,0 мм MTSSCS .13,0×10,0 мм MTSSCF .11,8×8,8 мм
Минимальный радиус изгиба.15 ммMTSS17 ммMTSSC.20 ммMTSSCS.20 ммMTSSCF.30 мм

Конструкция

Нагревательный элемент — никель-хром.

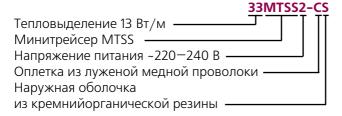
Токопроводящие проводники — луженая медь сечением $2,5 \text{ мм}^2$.

Изоляция проводников — кремнийорганическая резина.

Оболочка – кремнийорганическая резина.

Оплетка — луженая медь (по заказу).

Наружная оболочка — кремнийорганическая резина или фторполимер (по заказу).


Сертификация

- Российский сертификат соответствия на ленты MTSS № РОСС GB.АЮ64.А00483, на нагревательные секции на их основе № РОСС RU.АЮ64.В00356
- © Сертификат пожарной безопасности № ССПБ GB.ОП019.А00005
- Сертификат соответствия на нагревательные ленты MTSS2-C, MTSS2-CS и MTSS2-CF № POCC RU.ГБ05.В00322 с маркировкой взрывозащиты 2ExelIT6 X
- Сертификат соответствия на нагревательные секции на основе лент MTSS-CS и MTSS-CF для использования на взрывоопасных объектах № РОСС RU.ГБ05.В00068
- Гигиеническое заключение на нагревательные секции на основе лент MTSS-CS и MTSS-CF № 77.ФЦ.12.355.П.1398.12.99

По запросу возможна сертификация на соответствие другим национальным стандартам.

Информация для заказа

Пример

Максимальные температуры трубы (изделия)

Температура поверхности нагревателя не должна превышать максимальной температуры, которую выдерживают его конструкционные материалы. Это обеспечивается путем ограничения температуры трубы или обогреваемого изделия до безопасного уровня, расчетом конструкции или посредством температурного контроля.

Номин. тепло-	Максимально допустимая температура трубы, °С			
выде- ление, Вт/м	MTSS	MTSS-C	MTSS-CS	MTSS-CF
6,5	190	190	190	190
13	180	185	185	185
23	155	165	165	165
33	120	125	130	125
50	85	85	95	90
66	40	45	55	50

Температуры трубы большие, чем приведенные выше, могут быть обеспечены с использованием устройств компенсации напряжения (например POWERMATCH).

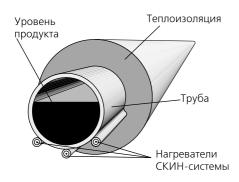
Максимальная длина цепи

Тепло-	Максимальная длина цепи*, м		
ление, Вт/м	115 B	230 B	
6,5	99	198	
13	70	140	
23	53	105	
33	44	88	
50	36	71	
66	31	62	

Коэффициент изменения тепловыделения

Нагревательная лента на 115 В		Нагревательная лента на 230 В		
277 B 230 B 208 B 120 B	5,80 4,00 3,27 1,09	277 B 240 B 220 B 208 B	1,45 1,09 0,91 0,82	
110 B	0,91	115 B	0,25	

^{*)} Допускается 10% отклонения тепловыделения от ленты к ленте.


СКИН-СИСТЕМА

Безопасная надежная система обогрева трубопроводов любой длины при надземной, подземной, подводной прокладке, в том числе во взрывоопасных зонах

Принцип действия СКИН-системы

Расположение СКИН-системы на магистральном трубопроводе

- Единственный способ обогрева трубопроводов длиной до 30 км без сопроводительной сети
- Самый эффективный способ обогрева любых магистральных трубопроводов неограниченной длины
- Высокая прочность и надежность, присущие конструкции системы
- Возможность использования во взрывоопасных зонах
- Тепловыделение нагревательных элементов до 120 Вт/м
- Рабочие температуры до 200°C
- Отсутствие потенциала на наружных поверхностях тепловыделяющих элементов, они заземлены, и не требуют электрической изоляции

Назначение

СКИН-система предназначена для поддержания температуры продукта, защиты от замораживания и стартового разогрева магистальных трубопроводов большой длины. СКИН-система — единственная система, позволяющая обогреть плечо трубопровода длиной до 30 км с подачей электропитания с одного конца, без сопроводительной сети, и самое эффективное и экономичное решение для обогрева магистральных трубопроводов неограниченной длины с сопроводительной питающей сетью.

Принцип действия

В СКИН-системе применяются специальные нагревательные элементы, использующие явление скин-эффекта и эффекта близости в проводниках из ферромагнитных материалов на переменном токе промышленной частоты. Нагревательный элемент представляет собой трубу из углеродистой стали с наружным диаметром 20-60 мм и толщиной стенки не менее 2-х мм, внутри которой располагается проводник из немагнитного материала (меди или алюминия) сечением 25-50 кв.мм. Проводник с одного конца надежно соединяется со стальной трубой, а с другой между трубой и проводником подается переменное напряжение, величина которого рассчитывается исходя из необходимого тепловыделения и длины участка обогрева. Переменный ток течет по всему сечению внутреннего проводника, поскольку на промышленной частоте в немагнитном материале с хорошей проводимостью заметного поверхностного эффекта не возникает. В ферромагнитном внешнем проводнике (стальной трубе) скин-эффект ярко выражен и весь ток течет, в силу эффекта близости, во внутреннем слое трубы тощиной около 1 мм, а потенциал наружной поверхности трубы остается практически нулевым. В силу большего сопротивления стали, основное тепловыделение (до 80%) происходит в стальной трубе.

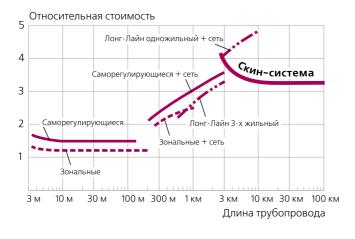
Технические характеристики

Рабочий диапазон температур -40 — +200°C Электропитание до 3 кВт 50 Гц

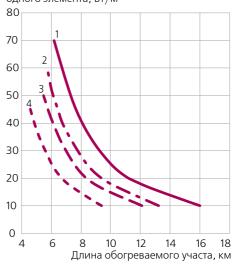
Конструкция

Тепловыделяющий элемент — труба из углеродистой стали диаметром 20—60 мм с толщиной стенки 2—4 мм.

Токонесущий проводник.


Антикоррозионная защита — эпоксидное покрытие (по требованию заказчика).

Расчетное распределение температур


Обогрев теплоизолированного трубопровода тремя нагревательными элементами СКИН-системы с суммарной мощностью 130 Вт/м. Диаметр трубы 530 мм, температура окружающего воздуха -20°C

Эффективность СКИН-системы в сравнении с другими типами нагревателей

Тепловыделение

Удельное тепловыделение одного элемента, Вт/м

	Диаметр тепловыделяющей трубы, дюйм	Сечение токонесущего проводника, мм²
1	1,5	50
2	1	35
3	3/4	25
4	3/8	16

Принадлежности

Для СКИН-системы имеется полный набор распределительных и соединительных коробок и муфт, крепежных элементов и регулируюшей аппаратуры (контроллеров и шкафов управления).

Среднетемпературный установочный провод для повода электропитания к нагревательным устройствам и электротехническим установкам с повышенным тепловыделением

Установочный провод

Наимен. марки провода	Кол-во и диаметр жил	Наружный диаметр, мм	Макс. доп. токовая нагрузка, А
CУ 1x0,75	19x0,23	1,95	10
СУ 2х0,75	7x0,37	4,7x2,75	
CY 1x1	19x0,26	2,1	15
CY 2x1	7x0,42	5x2,9	
CY 1x1,5	19x0,32	2,4	20
CY 2x1,5	7x0,42	5,6x3,2	
CY 1x2,5	19x0,42	2,9	25
CY 2x2,5	7x0,68	6,6x3,7	

- Выдерживает температуры до 200°C
- Рабочее напряжение до 380 В
- Высокая гибкость
- Стойкость к агрессивным средам

Особенности

Среднетемпературные установочные провода марки СУ используются в качестве установочных проводов (холодные концы) в составе нагревательной секции на базе проводов марки СНО. Теплостойкость изоляции проводов марки СУ позволяет им работать в зонах с температурой до 200°С. Они незаменимы в отраслях с горячим оборудованием, в химической, кондитерской, нефтегазовой промышленности. Провода успешно используются в горячих помещениях саун и бань.

Провода устойчивы к агрессивным средам. Пожаробезопасны. Морозоустойчивы. Имеют хорошую гибкость. Могут выполняться различных сечений и с различным количеством жил.

Провода могут работать в диапазоне температур от -40 до +60°C и напряжении до 380 В постоянного или переменного тока. Срок службы провода — 16 лет.


Технические характеристики

Конструкция

Нагревательная жила из сплава высокого сопротивления. Изоляция и оболочка из фторопластовой пленки.

Информация для заказа

Пример

высокотемпературные провода

BHO

Электрический нагревательный провод для обогрева и технологического нагрева экструдеров, массопроводов, емкостей, сушильных шкафов и т.д.

Нагревательный провод постоянной мощности

- Выдерживает температуры до 1000°C
- Максимальное тепловыделение 370 Вт/м
- По заказу могут быть изготовлены готовые нагревательные секции
- Высокая гибкость
- Рабочее напряжение ~220/240 В 50 Гц или 380 В
- Незаменим для обогрева технологического оборудования и переработки полимеров

Особенности

Высокотемпературный провод ВНО предназначен для обогрева и технологического нагрева разнообразного оборудования. Успешно используется для обогрева цилиндров и головок пластмассовых экструдеров, литьевых машин, трубопроводов расплавленного битума, в сушильных шкафах и многих других установках. Провод обладает высокой гибкостью и малым радиусом изгиба, что позволяет монтировать его по сложным поверхностям (массопроводы, емкости, плиты прессов).

Возможна комплектация провода как отрезками любой длины, так и готовыми нагревательными секциями с соединительными керамическими муфтами и «холодными концами».

Варианты исполнения

ВНО Исполнение 1

Конструкция с изоляцией и оболочкой из стеклонитей, пропитанной кремнеорганическим композитом ($t_{max} = 550^{\circ}\text{C}$)

ВНО Исполнение 2

Конструкция с изоляцией и оболочкой из кварцевых нитей ($t_{max} = 1000$ °C)

Технические характеристики

Максимальная
рабочая температура:
И-1500°C
И-2
Максимально допустимая
температура без нагрузки:
И-1
И-2
Минимальная
температура монтажа40°С
Электропитание~220-240 В
(~380 В по заказу)
Сопротивление изоляции
не менее
Минимальный радиус изгиба
при эксплуатации и хранении100 мм

Минимальный допустимый	
радиус однократного изгиба	

Технические характеристики провода ВНО при t жилы 500°C

Марка провода	Число и диаметр проволок нагревательной жилы, мм	Ном. наружный диаметр провода, мм	Длина нагревательной секции на 220 В, м	Мощность секции, Вт
ВНО	1x0,3	2,9	5,3	460
	1x0,5	3,1	8,2	850
	1x0,63	3,2	11,2	1290
	1x0,8	3,35	11,8	1500
	1x1,0	3,4	14,1	1970
	1x1,2	3,6	16,3	2450
	1x1,5	3,9	19,3	3220

Конструкция

Нагревательная жила — одножильная из сплава высокого сопротивления.

Изоляция — сплошная, из стеклонитей или кварцевых нитей.

Наружная оболочка— сплошная, из стеклонитей или кварцевых нитей.

Испытательное напряжение изоляции — 1500 В.

Сертификация

- © Сертификат соответствия № РОСС RU.AЮ64.B00357
- Сертификат соответствия
 № РОСС RU.ГБ05.В00324 с маркировкой взрывозащиты 2ExelIT6 X
- © Сертификат пожарной безопасности № ССПБ RU.АЮ64х.В00030
- **©** Гигиеническое заключение № 19.МЦ.03.229.Т.11826.F7

Информация для заказа

Пример

BHC

Электрический нагревательный провод для обогрева и технологического нагрева экструдеров, массопроводов, емкостей, сушильных шкафов и т.д.

Нагревательный провод постоянной мощности

- Выдерживает температуры до 1000°C
- Максимальное тепловыделение 470 Вт/м
- По заказу могут быть изготовлены готовые нагревательные секции
- Высокая гибкость
- Рабочее напряжение ~220/240 В 50 Гц или 380 В
- Особенно подходит для обогрева технологического оборудования с повышенной теплоотдачей

Особенности

Высокотемпературный провод ВНС предназначен для обогрева и технологического нагрева оборудования с высокой теплоотдачей. Успешно используется для обогрева головок экструдеров, литьевых машин, термопластавтоматов, пресс-форм, в сушильных шкафах и многих других установках. Провод обладает высокой гибкостью и малым радиусом изгиба, что позволяет монтировать его по сложным поверхностям (массопроводы, емкости, плиты прессов).

Возможна комплектация провода как отрезками любой длины, так и готовыми нагревательными секциями с соединительными керамическими муфтами и «холодными концами».

Варианты исполнения

ВНС Исполнение 1

Конструкция со спиральной нагревательной жилой, изоляцией и оболочкой из стеклонитей ($t_{max} = 550^{\circ}\text{C}$)

ВНС Исполнение 2

Конструкция со спиральной нагревательной жилой, изоляцией и оболочкой из кварцевых нитей $(t_{\text{max}} = 1000 \, ^{\circ}\text{C})$

Технические характеристики

Максимальная	
рабочая температура:	
И-1	
И-2	1000°C
Максимально допустимая температура без нагрузки:	
И-1	
И-2	1200°C
Минимальная	
температура монтажа	40°C
Электропитание	220-240 B
	(~380 В по заказу)
Сопротивление изоляции	
не менее	1×10 ⁵ МОм×м

Минимальный радиус изгиба	
при эксплуатации и хранении	
Минимальный допустимый	
радиус однократного изгиба	

Технические характеристики провода ВНС при t жилы 500°C

Марка	Число	Ном.	Длина	Мощность
провода	и диаметр	наружный	нагревательной	секции,
	проволок	диаметр	секции	Вт
	нагревательной	провода,	на 220 В, м	
	жилы, мм	MM		
BHC	1x0,3	4,42	1,85	325
	1x0,45	4,45	2,7	460
	1x0,5	4,6	3	554
	1x0,63	4,85	4,1	787

Конструкция

Нагревательная жила — спиральная одножильная из сплава высокого сопротивления.

Сердечник — сплошной из стеклонитей или кварцевых нитей.

Изоляция— сплошная, из стеклонитей или кварцевых нитей.

Наружная оболочка — сплошная, из стеклонитей или кварцевых нитей.

Испытательное напряжение изоляции — 1500 В.

Сертификация

- © Сертификат соответствия № РОСС RU.AЮ64.B00357
- © Сертификат соответствия
 № РОСС RU.ГБ05.В00324 с маркировкой взрывозащиты 2ExellT6 X
- © Сертификат пожарной безопасности № ССПБ RU.AЮ64x.B00030
- **©** Гигиеническое заключение № 19.МЦ.03.229.Т.11826.F7

Информация для заказа

Пример

PHT

Электрическая нагревательная лента постоянной мощности для поддержания температуры процессов в трубопроводах и резервуарах, в том числе в опасных зонах

ПАУЭРХИТ

- Рабочие температуры до 285°C
- Тепловыделение до 70 Вт/м
- Может быть отрезана нужной длины без ущерба для характеристик
- Соответствует стандарту CENELEC для применения в опасных зонах
- Выпускается на напряжения ~110/120 и ~220/240 В

Особенности

РНТ (Пауэрхит) — это нагревательная лента постоянной мощности, соответсвующая стандарту BS6351, уровень 22, которая может использоваться для защиты от замораживания или поддержания температур процесса в трубопроводах и резервуарах.

Она может быть отрезана до нужной длины по месту и может заменить кабели с минеральной изоляцией для применения, где важна подгонка по месту или предпочтителен кабель для полевых условий.

Пауэрхит одобрена для использования в опасных зонах в соответсвии со стандартом CENELEC.

Варианты исполнения

PHT

Конструкция без оплетки для использования в безопасных местах.

PHT...N

С никелированной оплеткой для использования в неопасных местах, опасных местах (зоны 1 и 2) или в местах, где обогреваемое оборудование не обеспечивает эффективного заземления.

PHT...NF

С наружной оболочкой из фторполимера поверх оплетки из никелированной медной проволоки, обеспечивает защиту оплетки от коррозии в местах, где могут присутствовать химические растворы или пары.

Технические характеристики

Makciana de liag tompopatura

без нагрузки
Минимальная температура монтажа40°C
Температурная группа
T2
T5
Электропитание ~220—240 или 110—120 В
Габариты 8,8×6,0 мм РНТN 9,5×6,6 мм

PHTNF	
Минимальный радиус изгиба	
PHT	
PHTN	
PHTNF	

Максимальные температуры трубы (изделия) °С

Марка кабеля	Ном. тепло-	Классификация месторасположе					ения	
	выде-		Гр	уппа оп	асной	T*		Без-
	ление Вт/м	Т6	T5	T4	T3	T2	T1	опасное**
PHT	10							275
	30		H	не аттес	тованс)		239
	50							192
	70							133
PHTN	10	44	61	102	180	275	275	275
	30	_	_	24	116	241	241	241
	50	_	_	_	48	190	190	190
	70	-	_	_	_	129	129	129
PHTNF	10	40	60	105	186	275	275	275
	30	_	_	22	132	249	249	249
	50	_	-	_	63	204	204	204
	70	_	_	_	_	147	147	147

Сертификация

ϵ

- **CENELEC** Сертификат № SCS Ex 94D3114 Стандарты EN50014:1992 и EN50019:1994, зоны 1 и 2
- Российский Сертификат Соответствия на ленты РНТ №РОСС GB.AЮ64.A00483, на нагревательные секции на их основе № РОСС RU.AЮ64.B00356
- © Сертификат соответствия на нагревательные ленты РНТ2-N и РНТ2-NF № РОСС RU.ГБ05.В00323 с маркировкой взрывозащиты 2ExeIIT6 X
- © Сертификат пожарной безопасности ГПС МВД России № ССПБ GB.ОП019.А00005
- Гигиеническое заключение на нагревательные секции на основе лент РНТ
 № 77.ФЦ.12.355.П.1398.12.99

По запросу возможна сертификация на соответствие другим национальным стандартам

Информация для заказа

Пример

Конструкция

Нагревательный элемент — никельхром.

Токопроводящие проводники — никелированная медь сечением 2,5 мм.

Изоляция проводников — стекловолокно/слюда.

Первичная изоляция — стекловолокно/слюда.

Оболочка — фторполимер (PFA).

Оплетка (по заказу) — никелированная медь.

Наружная оболочка (по заказу) — фторполимер (PFA).

Максимальная длина цепи

Тепло-		ьная длина ***, м
ление, Вт/м	115 B	230 B
10	79	152
30	46	88
50	35	68
70	30	57

Коэффициент изменения тепловыделения

	Нагревательная лента на 115 В		ательная на 230 В
277 B 230 B 208 B 120 B 110 B	230 B 4,00 208 B 3,27 120 B 1,09		1,45 1,09 0,91 0,82 0,25

^{*)} Пределы температур согласно EN50014

^{**)} Температуры ограничены материалами и конструкцией (допустимые температуры)

^{***)} Допускается 10% отклонения тепловыделения от ленты к ленте.

AHT

Электрическая нагревательная лента постоянной мощности для поддержания температуры процессов в трубопроводах и резервуарах, в том числе в опасных зонах

ПАУЭРХИТ

- Рабочие температуры до 350°C
- Тепловыделение до 150 Вт/м
- Может быть отрезана нужной длины без ущерба для характеристик
- Соответствует стандарту CENELEC для применения в опасных зонах
- Выпускается на напряжения ~110/120 и ~220/240 В

Особенности

АНТ (Пауэрхит) — это нагревательная лента постоянной мощности, соответсвующая стандарту BS6351, уровень 22, которая может использоваться для защиты от замораживания или поддержания температур процесса в трубопроводах и резервуарах.

Она может быть отрезана до нужной длины по месту и может заменить кабели с минеральной изоляцией для применения, где важна подгонка по месту или предпочтителен кабель для полевых условий.

Пауэрхит одобрена для использования в опасных зонах в соответсвии со стандартом CENELEC.

Установка нагревательной ленты проста, занимает мало времени и не требует специальных навыков или инструментов. Все компоненты для заделки концов, соединения и подключения питания имеются в удобных наборах.

АНТ заключена в сплошную прессованную алюминиевую оболочку для обеспечения максимальной механической прочности даже после серьезных нарушений в процессе нагревания.

Технические характеристики

Максимальная температура без нагрузки
Минимальная температура монтажа40°C
Температурная группа
T1
T2300°C
T3200°C
T4
T5
T685°C
Электропитание ~220-240 или 110-120 В
Габариты
АНТ9×6 мм
Минимальный радиус изгиба
АНТ

Конструкция

Нагревательный элемент — никель-хром.

Токопроводящие проводники — никелированная медь сечением 2,5 мм.

Изоляция проводников — стекловолокно/слюда.

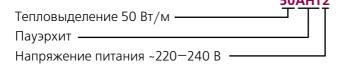
Первичная изоляция — стекловолокно/слюда.

Оболочка – алюминий.

Максимальные температуры трубы (изделия) °С

Марка кабеля	Ном. тепло-	Классификация месторасположения						
	выде-		Группа опасной Т*					Без-
	ление Вт/м	Т6	T5	T4	T3	T2	T1	опасное**
AHT	10	34	501	100	188	290	340	340
	50	_	_	_	39	178	276	276
	100	_	-	-	-	48	140	140
	150	_	_	_	_	_	36	36

Сертификация


ϵ

- **CENELEC** Сертификат № SCS Ex 94D3114 Стандарты EN50014:1992 и EN50019:1994, зоны 1 и 2
- Российский Сертификат Соответствия на ленты АНТ №РОСС GB.АЮ64.А00483, на нагревательные секции на их основе № РОСС RU.АЮ64.В00356
- © Сертификат соответствия на нагревательные ленты АНТ2 № РОСС RU.ГБ05.В00323 с маркировкой взрывозащиты 2ExeIIT6 X
- © Сертификат пожарной безопасности ГПС МВД России № ССПБ GB.ОП019.А00005
- Гигиеническое заключение на нагревательные секции на основе лент АНТ
 № 77.ФЦ.12.355.П.1398.12.99

По запросу возможна сертификация на соответствие другим национальным стандартам

Информация для заказа

Пример

Максимальная длина цепи

Тепло- выде-		ьная длина ***, м
ление, Вт/м	115 B	230 B
10	75	144
50	34	64
100	24	46
150	19	37

Коэффициент изменения тепловыделения

Нагревательная лента на 115 В			Нагревательная лента на 230 В	
277 B	5,80	277 B	1,45	
230 B	4,00	240 B	1,09	
208 B	3,27	220 B	0,91	
120 B	1,09	208 B	0,82	
110 B	0,91	115 B	0,25	

^{*)} Пределы температур согласно EN50014

^{**)} Температуры ограничены материалами и конструкцией (допустимые температуры)

^{***)} Допускается 10% отклонения тепловыделения от ленты к ленте.

Высокотемпературный установочный провод для повода электропитания к нагревательным устройствам и электротехническим установкам с повышенным тепловыделением

Установочный провод

Наимен. марки провода	Кол-во и диаметр жил	Наружный диаметр, мм	Макс. доп. токовая нагрузка, А
ВУ 1х0,75	19x0,23	3,55	15
	7x0,37		
ВУ 1х1	19x0,26	3,7	20
	7x0,42		
ВУ 1х1,5	19x0,32	4,0	25
	7x0,42		
ВУ 1х2,5	19x0,42	4,5	30
	7x0 68		

- Выдерживает температуры до 350°C
- Рабочее напряжение до 220 В
- Высокая гибкость
- Высокая стойкость к продавливанию

Особенности

Высокотемператуные провода марки ВУ используются в качестве установочных («холодные концы») в составе нагревательных секций на базе проводов морок ВНО и ВНС. Теплостойкость изоляции проводов ВУ позволяет им работать в зонах с температурой до 350°С

Провода ВУ необходимы для подведения питания в горячую зону оборудования, где не могут применяться традиционные провода питания на ПВХ изоляции. Провода успешно применяются в производстве и переработке полимеров, в металлургической отрасли, в нагревательных печах и сушильных шкафах.

Провода устойчивы к тепловым и механическим нагрузкам на продавливание. Могут касаться горячего корпуса оборудования. Но при этом не допускают присутствие влаги. Изоляция провода невлагостойка. При переходе во влажную зону — провода ВУ продлеваются другими установочными проводами, допускающими работу в этих условиях.

Провода могут работать в диапазоне температур от -40 до +60°C и напряжении до 220 В постоянного или переменного тока.

Срок службы провода — 1000 часов.

Конструкция

Токопроводящая жила из медных никелированных проволок

Изоляция — стеклонити марки ВМПС или КС. Оболочка — стеклонити марки ВМПС или КС.

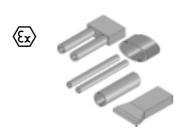
Технические характеристики

Максимальная рабочая температура350°С		
Минимальная рабочая температура40°C		
Электропитание		
Минимальная температура монтажа10°		
Минимально допустимый		
радиус однократного изгиба		
при монтаже кабеля 10 ном. наружных		
диаметров кабеля		
Сопротивление изоляции		
не менее		

Информация для заказа

Пример

_	<u>ву 1х1</u>
Высокотемпературный	
установочный провод	
Количество жил в проводе	
Сечение олной жилы 1 мм² ———	


АКСЕССУАРЫ

Фирма «ССТ» предоставляет полный набор аксессуаров для монтажа кабельных нагревательных систем любой сложности, в том чиле в опасных зонах

Устройство DESTU

Герметичное устройство для заделки прямого исполнения. Устройство DESTU, для безопасных и опасных областей, снижает риск повреждения нагревательных кабелей в местах заделки, так как позволяет избежать открытых участков кабеля, выходящих из теплоизоляции для ввода в монтажную коробку. Имеются утсройства DESTU для присоединения кабелей питания, соединения нагревательных кабелей и T-образного соединения 3-х кабелей.

Комплектующие:

- Устройство DESTU
- Запорное кольцо
- Волокнистая шайба
- Глухое уплотнение
- Болты
- Шайбы Гровера
- Листовка с инструкцией
- Предупреждающая наклейка

XOMYT PFS

Хомуты для крепления устройства DESTU и кронштейнов монтажных коробок к трубе.

Варианты

PFS050 (L = 170 мм) для труб ∅ до 50 мм вкл.

PFS100 (L = 350 мм) для труб ∅ до 100 мм вкл.

PFS200 (L = 700 мм) для труб \varnothing до 200 мм вкл.

PFS300 (L = 1000 мм) для труб \varnothing до 300 мм вкл.

PFS400 (L = 1300 мм) для труб ∅ до 400 мм вкл.

PFS500 (L = 1700 мм) для труб \varnothing до 500 мм вкл.

PFS800 (L = 2700 мм) для труб \emptyset до 800 мм вкл.

Требуется по 2 на каждое устр-во DESTU.

PFS/3 - (L = 3000 мм) для резервуаров

Уплотнение DS

Уплотнения для DESTU.

Предлагаются поштучно или в упаковках по 6 шт.

Уплотнения имеют номера от1 до 5.

Используются на вводах нагревательной ленты в устройство DESTU.

Комплект для заделки кабеля TK/FSx/X

Комплект для заделки кабеля

Имеются термоусаживающиеся (TK/FSx/T) или в виде резиновых насадок (TK/FSx/S).

Поставляются с кембриком защитного провода и контактом.

Клей-герметик RTV0.5 (Loctite 5366, 5900)

Одного тюбика достаточно для шести питающих или оконечных уплотнений.

Только для TK/FSx/S.

Соединительная коробка АВОХ

Соединительная коробка АВОХ для безопасной зоны.

ABOX 060

ABOX 100

Аксессуары (заказываются отдельно):

Кронштейн для крепления к трубе; Встраиваемые втулки PG26, PG21; Герметичные пробки PG26, PG21; Изоляционные крышки; Прокладки.

Кронштейн РВ

Кронштейн для крепления монтажных коробок к трубе. Крепится с помощью двух хомутов типа PFS (заказываются отдельно).

Монтажная коробка DJB9000

Соединительная коробка во взрывозащищенном исполнении с отверстиями, сконструированная специально для использования с DESTU. Имеет 1 отв. М32 для DESTU и 2 отв. М20 для сальников.

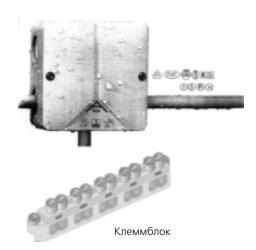
(Показанные здесь сальники должны быть заказаны отдельно).

Монтажная коробка ЈВ9000

Соединительная коробка во взрывозащищенном исполнении с отверстиями для использования без DESTU. Имеет 3 отв. М20 для сальников. Комплектуется клеммником (6 модулей, 27 A, 4 кв.мм).

(Показанные здесь сальники должны быть заказаны отдельно).

Соединительная муфта UNICLIP


Универсальное устройство для заделки и сращивания кабелей.

Основное назначение простая заделка саморегулирующихся нагревательных кабелей типа FSR, FSP, HW-R, HW-P, GTe.

Для заделки не требует специальных инструментов.

Может служить для:

- Запитки одного или двух нагр. кабелей;
- Сростки двух нагр. кабелей;
- Т-образной трех нагр. кабелей;

• Герметичной оконечной задлелки нагр. кабелей.

Номинальные параметры:

Ток20 А,
Напряжение
Сечение кабелей
Степень защиты
Макс. температура110°С

Крепится на кронштейне PB/UC (заказывается отдельно), обеспечивающим расположение муфты вне теплоизоляции для удобства доступа.

Соединительная муфта UNICLIP Micro

Универсальное устройство для заделки и сращивания кабелей.

Основное назначиение — простая заделка саморегулирующихся нагревательных кабелей типа Фризстоп-Микро. Для заделки не требует специальных инструментов.

Может служить для:

- Запитки одного или двух нагр. кабелей;
- Сростки двух нагр. кабелей;
- Т-образной трех нагр. кабелей;
- Перекрестной сростки 4-х нагр. кабелей.

Номинальные параметры:

Ток	16 A,
Напряжение	220 B,
Сечение кабелей	.2,5 мм ²

Крепится на кронштейне PB/UCM (заказывается отдельно), обеспечивающим расположение муфты вне теплоизоляции для удобства доступа.

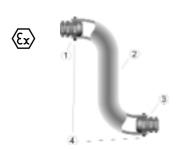
Ответвление для устройства DESTU DESTU/T/S

Для безопасной зоны

- 1 Сальник
- 2 Гофрированная трубка длиной 0,6 м
- 3 Уплотнение для сальника 2 шт.

Применяется с устройством LEK/U.

Ответвление для устройства DESTU DESTU/T/S


Исполнение для взрывоопасных зон.

- 1 Сальник PGSn для коробки DJB9000
- 2 Резиновый армированный рукав 0,7 м
- 3 Сальник GW-50416 для устройства LEK/U
- 4 Хомут диаметром 28/48 мм 2 шт.

Применяется с устройством LEK/U.

Устройство для крепления муфты на трубе РВ/ИСМ

Сальник GW-50416

- 1 Головка
- 2 Шайба из оцинкованной стали
- 3 Уплотнение для греющего кабеля
- 4 Уплотнение станд. сальника
- 5 Корпус
- 6 Стопорная шайба

Комплект сальника xGSn

Имеется вариант из пластмассы (PGSn) или латунный (BGSn). Пластмассовые сальники имеют номера от 1 до 5. Латунные сальники имеют номера от 1 до 4.

Самоклеющаяся алюминиевая крепежная лента ЛАС

Применение:

Крепление нагревательной ленты к плоским поверхностям, напр., резервуаров.

Крепление нагревательной ленты к корпусам вентилей/насосов.

Подклейка под нагревательные ленты, укладываемые на пластмассовые трубы.

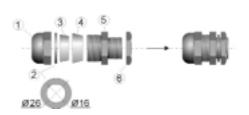
Технические характеристики:

Длина50 м	
Ширина50 мм	
Стойкость к постоянному	
воздействию температуры	
Минимальная температура монтажа0	
Адгезивный материалакрил	

Самоклеющаяся поливинилхлоридная крепежная лента FT/HTP

Применение:

Крепление нагревательной ленты к трубам. Использование с нагревательными лентами с ПВХ-покрытием.


Технические характеристики:

Длина	
Ширина12 мм	
Стойкость к постоянному	
воздействию температуры70°С	
Минимальная температура монтажа0°C	
Алгезивный материал каучук	

Самоклеющаяся стекловолоконная крепежная лента FT/HTS

Применение:

Крепление нагревательной ленты к трубам. Используется со всеми типами нагревательных лент.

0

Технические характеристики:

ıина50	M
ирина12 м	lM
ойкость к постоянному	
здействию температуры135	°C
инимальная температура монтажа0	°C
цгезивный	
териал модифицированный кауч	ук

Неадгезивная стекловолоконная крепежная лента FT/PGL

Применение:

Крепление нагревательной ленты к трубам большого диаметра. Используется со всеми типами нагревательных лент.

Технические характеристики:

Длина
Ширина 25 мм
Стойкость к постоянному
воздействию температуры
Минимальная температура
монтажа
Адгезивный материалотсутствуе

Устройство для ввода кабеля под теплоизоляцию LEK/U

Комплект поставки:

- 1 Сальник
- 2 Металлическая пластина
- 3 Уплотнение
- 4 Саморезы (4 шт.)

Наборы для заделки

Стандартные наборы для заделки включают пластиковые (или латунные) сальники, каждые из которых могут быть приспособлены для использования как в безопасных, так и в опасных областях. Поставляются также наконечники из кремнийорганической резины для безопасной и электрически надежной заделки удаленных концов нагревательных кабелей. Обжимные контакты, предупреждающие наклейки и инструкции входят в стандартный комплект поставки системы.

Маркирующие наклейки

Ламинированные пластиковые маркирующие наклейки являются как правило специфическими для конкретного проекта и изготовляются специально для него. Возможны надписи на всех языках, по заказу.

